The Six Sigma Handbook
About the Authors

Thomas Pyzdek holds more than 50 copyrights including *The Six Sigma Handbook*, *The Quality Engineering Handbook* and *The Handbook of Quality Management*. His works are used by thousands of universities and organizations around the world to teach process excellence. He offers online training and certification in Six Sigma, Lean and Lean Six Sigma. Pyzdek has provided training and consulting to employers and clients in all industries since 1967. He provides consulting guidance from the executive suite to “Belts” working in the trenches. Pyzdek is a Fellow of ASQ and recipient of the ASQ Edward’s Medal and the Simon Collier Quality Award, both for outstanding contributions to the field of quality management, and the ASQ E.L. Grant Medal for outstanding contributions to Quality Education. Pyzdek serves on numerous editorial boards, including *The Quality Management Journal*, *Quality Engineering*, and *International Journal of Six Sigma and Competitive Advantage*.

Paul Keller is President of Quality America, Inc., where he works with clients to successfully implement quality improvement concepts and techniques across a full spectrum of manufacturing and service sectors. His online courses and training materials are available through select colleges and universities worldwide, as well as through Quality America’s website. In addition to a number of published articles in quality improvement, Keller has authored *Six Sigma Demystified* (McGraw-Hill, 2005) and *Statistical Process Control Demystified* (McGraw-Hill, 2011), and co-authored (with Pyzdek) *The Handbook for Quality Management*, Second Edition (McGraw-Hill, 2011) and the third and fourth editions of *The Six Sigma Handbook*.
The Six Sigma Handbook

Fourth Edition

Thomas Pyzdek
Paul Keller
CONTENTS

Preface ... xiii

PART I Six Sigma Implementation and Management

CHAPTER 1 Building the Responsive Six Sigma Organization 3
What Is Six Sigma? 3
 Why Six Sigma? 4
The Six Sigma Philosophy 6
Six Sigma Versus Traditional Three Sigma Performance 8
The Change Imperative 12
Implementing Six Sigma .. 17
 Timetable .. 18
 Infrastructure 21
Integration Six Sigma and Related Initiatives 38
Deployment to the Supply Chain 52
Communications and Awareness 54

CHAPTER 2 Recognizing and Capitalizing on Opportunity 63
Methods for Collecting Customer Data 63
 Surveys .. 64
 Focus Groups 73
 Operational Feedback Systems 74
Cost of Poor Quality ... 77
 Cost of Quality Examples 80
 Quality Cost Bases 83
Benchmarking ... 84
 The Benchmarking Process 84
 Getting Started with Benchmarking 85
 Why Benchmarking Efforts Fail 87
 The Benefits of Benchmarking 88
Contents

- *Some Dangers of Benchmarking* .. 89
- Innovation ... 89
- *Kano Model* ... 90
- *Quality Function Deployment* .. 91
- *Translating Customer Demands* .. 95
- *Creative Destruction* ... 103
- Strategic Planning ... 108
- *Organizational Vision* ... 109
- *Strategy Development* ... 111
- *Strategic Styles* ... 112
- *Possibilities-Based Strategic Decisions* .. 113
- *Strategic Development Using Constraint Theory* 115
 - *The Systems Approach* .. 116
 - *Basic Constraint Management Principles and Concepts* 119
 - *Tools of Constraint Management* .. 128
 - *Constraint Management Measurements* 140
 - *Summary and Conclusion* ... 145

CHAPTER 3

- *Data-Driven Management* .. 147
 - *Attributes of Good Metrics* ... 147
 - *Measuring Causes and Effects* .. 149
 - *The Balanced Scorecard* ... 151
 - *Translating the Vision* ... 153
 - *Communicating and Linking* .. 161
 - *Business Planning* ... 164
 - *Feedback and Learning* .. 168

CHAPTER 4

- *Maximizing Resources* ... 179
 - *Choosing the Right Projects* ... 179
 - *Types of Projects* ... 180
 - *Analyzing Project Candidates* .. 181
 - *Using Pareto Analysis to Identify Six Sigma Project Candidates* 189
 - *Throughput-Based Project Selection* 191
 - *Ongoing Management Support* .. 197
 - *Internal Roadblocks* .. 198
 - *External Roadblocks* .. 199
 - *Individual Barriers to Change* .. 199
PART II Six Sigma Tools and Techniques

CHAPTER 5 Project Management Using DMAIC and DMADV 213
 DMAIC and DMADV Deployment Models ... 213
 Project Scheduling .. 218
 Project Reporting .. 230
 Project Budgets ... 232
 Project Records .. 233
 Six Sigma Teams ... 234
 Team Membership ... 235
 Team Dynamics Management, Including Conflict Resolution 235
 Stages in Group Development ... 236
 Member Roles and Responsibilities ... 238
 Management's Role ... 240
 Facilitation Techniques ... 240

CHAPTER 6 The Define Phase ... 245
 Project Charters .. 245
 Project Decomposition ... 247
 Work Breakdown Structures ... 247
 Pareto Analysis .. 249
 Deliverables .. 250
 Critical to Quality Metrics .. 251
 Critical to Schedule Metrics .. 257
 Critical to Cost Metrics ... 261
 Top-Level Process Definition .. 266
 Process Maps ... 267
 Assembling the Team ... 267

Ineffective Management Support Strategies 200
Effective Management Support Strategies 201
Cross-Functional Collaboration ... 202
Tracking Six Sigma Project Results .. 203
Financial Results Validation ... 206
Team Performance Evaluation ... 206
Team Recognition and Reward ... 207
Lessons-Learned Capture and Replication 209
CHAPTER 7 The Measure Phase ... 271
Process Definition ... 271
 Flowcharts ... 272
 SIPOC .. 273
Metric Definition .. 277
 Measurement Scales 278
 Discrete and Continuous Data 280
Process Baseline Estimates 280
 Enumerative and Analytic Studies 282
 Principles of Statistical Process Control 285

CHAPTER 8 Process Behavior Charts 293
Distributions .. 293
 Methods of Enumeration 293
 Frequency and Cumulative Distributions 295
 Sampling Distributions 296
 Binomial Distribution 297
 Poisson Distribution 298
 Hypergeometric Distribution 300
 Normal Distribution 302
 Lognormal Distribution 307
 Exponential Distribution 308
 Weibull Distribution 309
Control Charts for Variables Data 311
 Averages and Ranges Control Charts 311
 Averages and Standard Deviation (Sigma) Control Charts .. 315
 Control Charts for Individual Measurements (X Charts) ... 317
Control Charts for Attributes Data 324
 Control Charts for Proportion Defective (p Charts) 324
 Control Charts for Count of Defectives (np Charts) 328
 Control Charts for Average Occurrences-Per-Unit (u Charts) ... 330
 Control Charts for Counts of Occurrences-Per-Unit (c Charts) . 334
Control Chart Selection 337
 Rational Subgroup Sampling 337
Control Chart Interpretation 342
 Run Tests .. 347
Short-Run Statistical Process Control Techniques 350
Contents

Variables Data	350
Attribute SPC for Small and Short Runs	362
Summary of Short-Run SPC	369
SPC Techniques for Automated Manufacturing	369
Problems with Traditional SPC Techniques	370
Special and Common Cause Charts	370
EWMA Common Cause Charts	371
EWMA Control Charts Versus Individuals Charts	378
Process Capability Indices	381
Example of Non-Normal Capability Analysis Using Minitab	386

CHAPTER 9 Measurement Systems Evaluation 393
- Definitions 393
- Measurement System Discrimination 397
- Stability 397
- Bias 399
- Repeatability 400
- Reproducibility 402
- Part-to-Part Variation 405
- Example of Measurement System Analysis Summary 406
- Gage R&R Analysis Using Minitab 407
- Linearity 411
- Linearity Analysis Using Minitab 413
- Attribute Measurement Error Analysis 415
- Operational Definitions 415
- How to Conduct Attribute Inspection Studies 418
- Example of Attribute Inspection Error Analysis 419
- Minitab Attribute Gage R&R Example 422

CHAPTER 10 Analyze Phase 427
- Value Stream Analysis 427
- Value Stream Mapping 431
- Spaghetti Charts 436
- Analyzing the Sources of Variation 437
- Cause and Effect Diagrams 438
- Boxplots 440
- Statistical Inference 442
- Chi-Square, Student's t, and f Distributions 443
Point and Interval Estimation .. 448
Hypothesis Testing ... 455
Resampling (Bootstrapping) .. 462
Regression and Correlation Analysis 463
 Linear Models .. 466
 Least-Squares Fit .. 469
 Correlation Analysis ... 473
Designed Experiments ... 475
The Traditional Approach Versus Statistically Designed Experiments ... 475
 Terminology .. 475
 Design Characteristics .. 477
 Types of Design ... 478
 One-Factor ANOVA ... 480
 Two-Way ANOVA with No Replicates 482
 Two-Way ANOVA with Replicates 483
 Full and Fractional Factorial .. 485
 Power and Sample Size .. 494
 Testing Common Assumptions ... 495
Analysis of Categorical Data ... 502
 Making Comparisons Using Chi-Square Tests 502
 Logistic Regression ... 504
 Binary Logistic Regression ... 506
 Ordinal Logistic Regression .. 509
 Nominal Logistic Regression .. 513
Non-Parametric Methods ... 515

CHAPTER 11 The Improve/Design Phase 521
Using Customer Demands to Make Design and Improvement Decisions .. 521
 Pugh Concept Selection Method 521
Lean Techniques for Optimizing Flow 522
 Tools to Help Improve Flow .. 523
Using Empirical Model Building to Optimize 526
 Phase 0: Getting Your Bearings 528
 Phase I: The Screening Experiment 529
 Phase II: Steepest Ascent (Descent) 533
 Phase III: The Factorial Experiment 534
Phase IV: The Composite Design .. 537
Phase V: Robust Product and Process Design 541

Data Mining, Artificial Neural Networks, and Virtual Process Mapping ... 545

Example of Neural Net Models ... 546

Optimization Using Simulation ... 549

Predicting CTQ Performance ... 550

Simulation Tools ... 550

Random Number Generators .. 554

Model Development .. 558

Virtual DOE Using Simulation Software 567

Risk Assessment Tools .. 569

Design Review ... 570

Fault-Tree Analysis ... 571

Safety Analysis .. 572

Failure Mode and Effect Analysis .. 575

Defining New Performance Standards Using

Statistical Tolerancing .. 578

Assumptions of Formula ... 582

Tolerance Intervals ... 582

CHAPTER 12 Control/Verify Phase 585

Validating the New Process or Product Design 585

Business Process Control Planning ... 585

Maintaining Gains ... 586

Tools and Techniques Useful for Control Planning 588

Preparing the Process Control Plan 589

Process Control Planning for Short and Small Runs 591

Process Audits .. 594

Selecting Process Control Elements 594

Other Elements of the Process Control Plan 597

APPENDIX 1 Glossary of Basic Statistical Terms 601

APPENDIX 2 Area Under the Standard Normal Curve 607

APPENDIX 3 Critical Values of the \(t \)-Distribution 611
Contents

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 4</td>
<td>Chi-Square Distribution</td>
<td>613</td>
</tr>
<tr>
<td>Appendix 5</td>
<td>F Distribution ($\alpha = 1%$)</td>
<td>615</td>
</tr>
<tr>
<td>Appendix 6</td>
<td>F Distribution ($\alpha = 5%$)</td>
<td>617</td>
</tr>
<tr>
<td>Appendix 7</td>
<td>Poisson Probability Sums</td>
<td>619</td>
</tr>
<tr>
<td>Appendix 8</td>
<td>Tolerance Interval Factors</td>
<td>623</td>
</tr>
<tr>
<td>Appendix 9</td>
<td>Control Chart Constants</td>
<td>627</td>
</tr>
<tr>
<td>Appendix 10</td>
<td>Control Chart Equations</td>
<td>629</td>
</tr>
<tr>
<td>Appendix 11</td>
<td>Table of $d_2^* ,$ Values</td>
<td>631</td>
</tr>
<tr>
<td>Appendix 12</td>
<td>Factors for Short Run Control Charts for Individuals, \bar{X}, and R Charts</td>
<td>633</td>
</tr>
<tr>
<td>Appendix 13</td>
<td>Sample Customer Survey</td>
<td>635</td>
</tr>
<tr>
<td>Appendix 14</td>
<td>Process σ Levels and Equivalent PPM Quality Levels</td>
<td>637</td>
</tr>
<tr>
<td>Appendix 15</td>
<td>Black Belt Effectiveness Certification</td>
<td>639</td>
</tr>
<tr>
<td>Appendix 16</td>
<td>Green Belt Effectiveness Certification</td>
<td>651</td>
</tr>
<tr>
<td>Appendix 17</td>
<td>AHP Using Microsoft Excel</td>
<td>663</td>
</tr>
</tbody>
</table>

References .. 667

Index ... 675
Even a brief overview of Six Sigma literature will uncover more than a few approaches to implementing Six Sigma. Some have been remarkably unsuccessful, while others have provided the vision and means for the organization to prosper. Online chat groups provide a global sounding board for the discontented as well as the enthused. For some, Six Sigma is dead, and for those, perhaps it should be. They are ready to move on to the “next big thing.”

What I tend to find most intriguing about these discussions are the details. What specifically failed in an implementation? Why didn’t Six Sigma work? What alternative provides an improved approach? Invariably, the failures suffered from predictably flawed approaches, hampered by the usual suspects of implementation issues: lack of commitment and/or resources, and poor or misdirected focus. The fundamentals of the Six Sigma approach remain sound: Prioritize specific issues impacting customers, shareholders and/or employees, and problem-solve over a relatively rapid time frame using data-driven cross-functional project teams sponsored by the functional stakeholder groups. Effectively-managed projects will quickly identify any organizational issues, highlighting the advantage of the project as the means to achieve manageable bites of improvement. Are there best practices that improve success rates? Absolutely! Best practices in Six Sigma are continuously evolving, just as Six Sigma itself evolved from earlier best practices in quality improvement. Those who truly “get it” know that Six Sigma will die only when organizations stop caring about their customers, employees and shareholders. Did Six Sigma really “kill innovation at XYZ Company?” Of course not! Can an overly bureaucratic approach to innovation stifle creativity? Yes, just as overzealous standardization emphasizes process consistency and internal productivity at the expense of an improved customer experience. These failures result from neglecting a key tenet of Six Sigma: customer focus.

This fourth edition seeks to address many of these challenges, with expanded materials on innovation, strategic development, Lean, and constraint management. If this is your first copy of The Six Sigma Handbook, you may find the implementation approach includes many of the practices advocated by “newer” disciplines, such as Business Process Management (BPM) or Business Process Improvement (BPI). The overall approach remains consistent with the earlier editions of the text, with elaboration and best practices added to more fully develop the approach in the reader’s mind.
You’ll notice many references to free online materials within the text, such as Excel file templates that can be used for analyzing projects, or videos that provide an in-depth narrative on specific topics. Additional links will be added over time to further extend the learning potential offered by the text, so be sure to regularly check back into the online site at www.mhprofessional.com/SSH4. We expect to offer additional learning options, some free and some at reasonable expense, based on reader feedback.

With well over 100,000 copies in print for its first three editions, The Six Sigma Handbook is well-established as a key reference guide for forward-thinking managers and customer-focused process improvement specialists alike. We’d like to thank our faithful readers who have made this work a lasting tribute to the concepts and techniques known as Six Sigma. We hope this fourth edition provides additional insight and direction to achieve ever-higher levels of value for your customers.

Paul Keller