CHAPTER e29

Atlas of Noninvasive Cardiac Imaging

Rick A Nishimura
Panithya Charoenthaitawee
Matthew Martinez

ECOCARDIOGRAPHIC IMAGES

Video e29-3 Real-time two-dimensional echocardiographic images of a patient with severe mitral regurgitation due to a flail posterior leaflet. The posterior mitral valve leaflet is completely unsupported and moves into the left atrium during systole. Transesophageal echocardiography provides high-resolution images of posterior structure such as the left atrium, mitral valve, and aorta.

Video e29-4 Real-time two-dimensional echocardiographic images of a patient with a vegetation on the mitral valve. There is a mobile echo density attached directly to the mitral valve apparatus that intermittently appears in the left atrium.

Video e29-5 Real-time two-dimensional echocardiographic images of a patient with a vegetation on the mitral valve. There is a mobile echo density attached directly to the mitral valve apparatus that intermittently appears in the left atrium.

Video e29-6 Real-time two-dimensional echocardiographic images of a patient with hypertrophic cardiomyopathy. There is a marked increase in left ventricular wall thickness with hyperdynamic systolic function.

Video e29-7 Real-time two-dimensional echocardiographic images of a patient with severe mitral regurgitation due to a flail posterior leaflet. The posterior mitral valve leaflet is completely unsupported and moves into the left atrium during systole. Transesophageal echocardiography provides high-resolution images of posterior structure such as the left atrium, mitral valve, and aorta.

Video e29-8 Real-time transesophageal echocardiographic images of a patient with severe mitral regurgitation due to a flail posterior leaflet. The posterior mitral valve leaflet is completely unsupported and moves into the left atrium during systole. Transesophageal echocardiography provides high-resolution images of posterior structure such as the left atrium, mitral valve, and aorta.

Video e29-9 Real-time two-dimensional echocardiographic images of a patient with a vegetation on the mitral valve. There is a mobile echo density attached directly to the mitral valve apparatus that intermittently appears in the left atrium.

Video e29-10 Real-time transesophageal echocardiographic images of a patient with a left atrial myxoma. There is a large echo-dense mass in the left atrium that is attached to the atrial septum. The mass moves across the mitral valve during diastole. Although an echocardiographic image cannot provide pathologic confirmation of the etiology of a mass, the diagnosis of atrial myxoma can be suspected from the appearance, mobility, and attachment to the atrial septum.

Video e29-11 Real-time two-dimensional echocardiographic images from the parasternal long-axis view of a patient with a large aneurysm of the ascending aorta.

Video e29-12 Real-time two-dimensional echocardiographic images of a patient with pericardial effusion. The effusion is shown as a black echo-free space surrounding the heart.

Video e29-13 Real-time two-dimensional echocardiographic images from a subcostal view showing a large secundum atrial septal defect. There is a “drop out” in the region of the mid atrial septum. The right ventricle is enlarged from right ventricular volume overload.

Video e29-14 Real-time two-dimensional echocardiographic images showing a close-up view of the atrial septum in a patient with the question of an atrial septal defect. A. (Play video) Gray-scale image showing a questionable “drop out” in the atrial septum. B. (Play video) Color flow imaging confirms left to right flow across the atrial septum.

Video e29-15 Real-time two-dimensional stress echocardiogram in a normal subject. The studies at rest are shown on the left and the studies during peak exercise are shown on the right. A. (Play video) Parasternal long-axis (top) and short-axis (bottom) views. B. (Play video) Apical four-chamber (top) and two-chamber (bottom) views.

Video e29-16 Real-time two-dimensional stress echocardiogram of a patient with coronary artery disease. The studies at rest are shown on the left and studies during peak exercise are shown on the right. A. (Play video) Parasternal long-axis (top) and short-axis (bottom) views. B. (Play video) Apical four-chamber (top) and two-chamber (bottom) views.

The images during peak exercise show regional wall motion abnormalities in the anteroseptal distribution indicative of myocardial ischemia. This was subsequently found to be associated with a high-grade lesion on the left anterior descending artery.
Disorders of the Cardiovascular System

Figure e29-1 Anterior planar thallium images following stress, showing increased lung uptake on the left (count intensity in lung >50% of that in myocardium) and normal lung uptake on the right (count intensity in lung <50% of that in myocardium).

Increased lung uptake of thallium may be seen immediately after stress. It reflects increased pulmonary capillary wedge pressure and occurs in the presence of severe coronary artery disease and/or left ventricular systolic dysfunction. It provides important adverse prognostic information that is incremental to other clinical, stress, and coronary angiographic variables.

Figure e29-2 Exercise SPECT 99mTc sestamibi scan in a 64-year-old male patient with a previous infarct. The stress images (left) show a large defect involving the apex, anterior, septal, and inferior walls (arrowheads) with little change from the rest images (right), signifying a fixed defect consistent with infarction. There is also severe left ventricular enlargement and severely reduced left ventricular systolic function by gated images (next image). The relative advantage of 201Tl and 99mTc are detailed in Table e20-1a. The better image quality and assessment of ventricular function permitted by 99mTc compounds have contributed to their more common use for stress imaging, although both 201Tl- and 99mTc-labeled compounds provide clinically useful myocardial perfusion images in the majority of patients. A “dual-isotope” protocol is employed in some centers. This uses 201Tl for the initial rest image and a 99mTc-labeled compound for the subsequent stress image, primarily for patient and scheduling convenience. SPECT, single photon emission computed tomography; 99mTc, technetium 99m.

Figure e29-3 Mesh cinegraphic display of images obtained from electrocardiographic gating of a SPECT 99mTc sestamibi scan in a 64-year-old male patient with a previous infarct (same patient as in Fig. e29-2). Gated images are generally acquired about 30–45 min following stress. Electrocardiographic gating allows calculation of left ventricular volumes and global systolic function, as well as visual assessment of regional wall motion. In this patient, the calculated left ventricular ejection fraction was 13%. There was severe global hypokinesis.

Figure e29-4 Adenosine PET N-13 ammonia in a 55-year-old obese male patient with typical angina. The stress images (left) show a large defect involving the apex, anterior, septal, inferior, and lateral walls (arrowhead) with normal or near-normal tracer uptake in the corresponding regions on the rest images (arrowheads), signifying a reversible defect consistent with ischemia. The patient was found to have severe multivessel coronary artery disease on subsequent invasive angiography.

The robust methods for attenuation correction with PET improve the specificity, particularly in obese populations and women, while the superior resolution and higher extraction fraction of PET tracers increase the sensitivity of detection of coronary artery disease. The excellent image quality of PET has contributed to their emerging use for stress imaging. Additional advantages include assessment of left ventricular volumes and systolic function, shorter imaging protocols, and lower radiation exposure, particularly with N-13 ammonia.

PET, positron emission tomography. SPECT, single photon emission computed tomography.
Figure e29-5 MR image of a patient with a right ventricular myxoma, which is shown as a bright oblong structure in the right ventricular outflow tract.

Video e29-17 (Play video) MRI scan in real time of a patient with a large left ventricular apical aneurysm. The long axis-view demonstrates a thin dyskinetic apical aneurysm with a preserved systolic function of the basal anterior and basal inferior wall. MRI scanning allows excellent visualization of endocardial border.

Figure e29-6 MR image with contrast enhancement of a patient with a large apical aneurysm and thrombus. Imaging the heart 10–20 min after gadolinium injection demonstrates enhancement of the infarcted tissue (visible as dense white image). The infarcted tissue retains contrast by virtue of its large extracellular volume. The left ventricular thrombus adherent to the infarcted myocardium is shown as a dark laminated area adjacent to the white myocardium.

Video e29-18 (Play video) Cine MRI scan of a patient with a dilated ascending aorta (annulo-aortic ectasia). There is a central jet of aortic regurgitation entering the left ventricular outflow tract.

Figure e29-7 MR images with contrast enhancement in a patient with acute pericarditis. In the presence of pericardial inflammation, the gadolinium enhancement occurs, seen as a white layer in the pericardium.

Figure e29-8 Three-dimensional reconstruction of a CT angiogram, showing a severe coarctation of the descending aorta. The large collateral vessels are the result of the severe stenosis of the distal thoracic aorta.
Figure e29-9 Three-dimensional reconstruction of a CT angiogram of the pulmonary veins, demonstrating an anomalous pulmonary venous drainage into the inferior vena cava. A: frontal view. B: posterior view.

Figure e29-10 Cardiac CT images demonstrating a calcified mass in the right ventricle, which at pathologic examination was a chronic thrombus. Calcification is seen as a bright signal in both the noncontrast (upper) and contrast-enhanced (lower) images.
Figure e29-11 Noncontrast image from an electron beam CT revealing two small foci of calcification in the left anterior descending artery (arrows).

Figure e29-12 CT image from a patient with calcific constrictive pericarditis. Calcification is seen as a bright signal in the anterior pericardium as well as calcification extending into the lateral wall of the left ventricle.

Figure e29-13 A reconstructed CT coronary angiogram showing a normal right coronary artery.
Video e29-19 (Play video) CT coronary angiogram showing a normal right coronary artery. The movie highlights multiple thin slices through the right coronary artery.

Figure e29-14 Three-dimensional reconstruction of a CT angiogram showing a large fistula of the left anterior descending artery.

Figure e29-15 Three-dimensional reconstruction of a CT angiogram demonstrating three saphenous vein coronary artery bypass grafts in different views. In the upper left-hand panel is an anterior posterior view of the heart and grafts. The heart is sequentially rotated clockwise in the panels going from left to right to illustrate the ability of CT angiography to visualize the saphenous vein grafts. RCA: saphenous vein graft to the right coronary artery; CX: saphenous vein graft to the circumflex artery; DIAG: saphenous vein graft to the diagonal artery.