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 The field of human biology has progressed over the last three 
centuries, largely as a result of the reductionist approach to the 
scientific problems that challenge the discipline. Biologists study 
the experimental response of a variable of interest in a cell or 
organism while holding all other variables constant. In this way, 
it is possible to dissect the individual components of a biologic 
system and assume that a thorough understanding of a specific 
component (e.g., an enzyme or a transcription factor) will provide 
sufficient insight to explain the global behavior of that system (e.g., a 
metabolic pathway or a gene network, respectively). Biologic systems 
are, however, much more complex and manifest behaviors that fre-
quently (if not invariably) cannot be predicted from knowledge of 
their component parts characterized in isolation. Growing recogni-
tion of this shortcoming of conventional biologic research has led to 
the development of a new discipline,  systems biology,  that is defined 
as the holistic study of living organisms or their cellular or molecular 
network components to predict precisely their response to perturba-
tions. Concepts of systems biology can be applied readily to human 
disease and therapy and define the field of  systems pathobiology,  in 
which genetic or environmental perturbations produce disease and 
drug perturbations restore normal system behavior. 

 Systems biology evolved from the field of systems engineering, in 
which a linked collection of component parts constitute a network 
whose output the engineer wishes to predict. The simple example 
of an electronic circuit can be used to illustrate some basic systems 
engineering concepts. All the individual elements of the circuit—
resistors, capacitors, transistors—have well-defined properties that 
can be characterized precisely. However, they can be linked (wired 
or configured) in a variety of ways, each of which yields a circuit 
whose response to voltage applied across it is different from the 
response of every other configuration. To predict the circuit’s 
(i.e., system’s) behavior, the engineer must study its response to 
perturbation (e.g., voltage applied across it) holistically rather than 
its individual components’ responses to that perturbation. Viewed 
another way, the resulting behavior of the system is greater than (or 
different from) the simple sum of its parts, and systems engineering 
utilizes rigorous mathematical approaches to predict these complex, 
often nonlinear, responses. By analogy to biologic systems, one can 
reason that detailed knowledge of a single enzyme in a metabolic 
pathway or of a single transcription factor in a gene network will 
not provide sufficient detail to predict the output of that metabolic 
pathway or transcriptional network, respectively. Only a systems-
based approach will suffice. 

 It has taken biologists a long time to appreciate the importance 
of systems approaches to biomedical problems. Reductionism has 
reigned supreme for many decades, largely because it is experimen-
tally and analytically simpler than holism, and because it has pro-
vided insights into biologic mechanisms and disease pathogenesis, 
and has led to successful therapies. However, reductionism cannot 
solve all biomedical problems. For example, the so-called off-target 
effects of new drugs that frequently limit their approval likely reflect 

the failure of a drug to be studied in holistic context, i.e., the failure 
to explore all possible actions aside from the principal target action 
for which it was developed. Other approaches to understanding 
biology therefore are clearly needed. With the growing body of 
genomic, proteomic, and metabolomic data sets in which dynamic 
changes in the expression of many genes and many metabolites are 
recorded after a perturbation and with the growth of rigorous math-
ematical approaches to analyzing those changes, the stage has been 
set for applying systems engineering principles to modern biology. 

 Physiologists historically have had more of a (bio)engineering 
perspective on the conduct of their studies and have been among 
the first systems biologists. Yet, with few exceptions, they, too, have 
focused on comparatively simple physiologic systems that are trac-
table using conventional reductionist approaches. Efforts at integra-
tive modeling of human physiologic systems, as first attempted by 
Guyton for blood pressure regulation, represent one application 
of systems engineering to human biology. These dynamic physi-
ologic models often focus on the acute response of a measurable 
physiologic parameter to a system perturbation, and do so from 
a classic analytic perspective in which all the conventional physi-
ologic determinants of the output parameter are known and can be 
modeled quantitatively. 

 Until recently, molecular systems analysis has been limited 
owing to inadequate knowledge of the molecular determinants of a 
biologic system of interest. Although biochemists have approached 
metabolic pathways from a systems perspective for over 50 years, 
their efforts have been limited by the inadequacy of key informa-
tion for each enzyme (K M , k cat , and concentration) and substrate 
(concentration) in the pathway. With increasingly rich molecular 
data sets available for systems-based analyses, including genomic, 
transcriptomic, proteomic, and metabolomic data, biochemists are 
now poised to use systems biology approaches to explore biologic 
and pathobiologic phenomena.    

  PROPERTIES OF COMPLEX BIOLOGIC SYSTEMS  �

 To understand how best to apply the principles of systems biology 
to human biomedicine, it is necessary to review briefly the building 
blocks of any biologic system and the determinants of system com-
plexity. All systems can be analyzed by defining their static topology 
(architecture) and their dynamic (i.e., time-dependent) response to 
perturbation. In the discussion that follows, system properties are 
described that derive from the consequences of topology (form) 
for dynamic response (function). Any system of interacting ele-
ments can be represented schematically as a network in which the 
individual elements are depicted as nodes and their connections 
are depicted as links.   The nature of the links among nodes reflects 
the degree of complexity of the system.  Simple systems  are those 
in which the nodes are linearly linked with occasional feedback or 
feedforward loops modulating system throughput in highly predict-
able ways. By contrast,  complex systems  are nodes that are linked 
in more complicated, nonlinear networks; the behavior of these 
systems by definition is inherently more difficult to predict owing 
to the nature of the interacting links, the dependence of the system’s 
behavior on its initial conditions, and the inability to measure the 
overall state of the system at any specific time with great precision. 
Complex systems can be depicted as a network of lower-complexity 
interacting components or modules, each of which can be reduced 
further to simpler analyzable canonical motifs (such as feedback 
and feedforward loops, or negative and positive autoregulation); 
however, a central property of complex systems is that simplifying 
their structures by identifying and characterizing the simpler sub-
structures does not yield a predictable understanding of a system’s 
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behavior. Thus, the functioning system is greater than (or different 
from) the sum of its individual, tractable parts. 

 Defined in this way, most biologic systems are complex systems 
whose behaviors are not readily predictable from simple reductionist 
principles. The nodes, for example, can be metabolites that are 
linked by the enzymes that cause their transformations, transcrip-
tion factors that are linked by the genes whose expression they 
influence, or proteins in an interaction network that are linked by 
cofactors that facilitate interactions or by thermodynamic forces 
that facilitate their biochemical association. Biologic systems typi-
cally are organized as  scale-free , rather than stochastic, networks of 
nodes. Scale-free systems are those in which a few nodes have many 
links to other nodes (highly linked nodes, or hubs) but most nodes 
have only a few links (weakly linked nodes). The term  scale-free  
refers to the fact that the distribution of nodes in the network is not 
influenced by the magnitude or scale of the links considered. This 
is quite different from two other common network architectures: 
random (Poisson) and exponential distributions. Scale-free net-
works can be mathematically described by a power law that defines 
the probability of the number of links per node [P(k) = k −(t) , where 
k is the number of links per node and is the slope of the log P(k) 
versus log(k) plot]; this unique property of most biologic networks 
is a reflection of their self-similarity or fractal nature (  Fig. e19-1  ). 

 There are unique properties of scale-free biologic systems that 
reflect their evolution and promote their adaptability and survival. 
Biologic networks likely evolved one node at a time in a process 
in which new nodes are more likely to link to a highly connected 
node than to a sparsely connected node. Furthermore, scale-free 
networks can become sparsely linked to one another, yielding more 
complex,  modular scale-free topologies . This evolutionary growth of 
biologic networks has three important properties that affect system 
function and survival. First, this scale-free addition of new nodes 
promotes  system redundancy , which minimizes the consequences 

of errors and accommodates adverse perturbations to the system 
robustly with minimal effects on critical functions (unless the 
highly connected nodes are the focus of the perturbation). Second, 
this resulting network redundancy provides a survival advantage to 
the system. In complex gene networks, for example, mutations or 
polymorphisms in weakly linked genes account for biodiversity and 
biologic variability without disrupting the critical functions of the 
system; only mutations in highly linked ( essential ) genes (hubs) can 
shut down the system and cause embryonic lethality. Third, scale-
free biologic systems facilitate the flow of information (e.g., metabo-
lite flux) across the system compared with randomly organized 
biologic systems; this so-called “small-world” property of the system 
(in which the clustered nature of the highly linked hubs defines a 
local neighborhood within the network that communicates through 
weaker, less frequent links to other clusters) minimizes the energy 
cost for the dynamic action of the system (e.g., minimizes the transi-
tion time between states in a metabolic network). 

 These basic organizing principles of complex biologic systems 
lead to three unique properties that require emphasis. First, bio-
logic systems are  robust , which means that they are quite stable 
in response to most changes in external conditions or internal 
modification. Second, a corollary to the property of robustness is 
that complex biologic systems are  sloppy , which means that they are 
insensitive to changes in external conditions or internal modifica-
tion except under certain uncommon conditions (i.e., when a hub 
is involved in the change). Third, complex biologic systems exhibit 
 emergent properties , which means that they manifest behaviors that 
cannot be predicted from the reductionist principles used to char-
acterize their component parts. Examples of emergent behavior in 
biologic systems include spontaneous, self-sustained oscillations in 
glycolysis; spiral and scroll waves of depolarization in cardiac tissue 
that cause reentrant arrhythmias; and self-organizing patterns in 
biochemical systems governed by diffusion and chemical reaction.  

  Figure e19-1       Network representations and their distributions . A 
random network is depicted on the left, and its Poisson distribution of the 
number of nodal connections (k) is shown in the graph below it. A scale-free 

network is depicted on the right, and its power law distribution of the number 
of nodal connections (k) is shown in the graph below it. Highly connected 
nodes (hubs) are lightly shaded.    
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  APPLICATIONS OF SYSTEMS BIOLOGY TO PATHOBIOLOGY  �

 The principles of systems biology have been applied to complex 
pathologic processes with some early successes. The key to these 
applications is the identification of emergent properties of the sys-
tem under study in order to define novel, otherwise unpredictable 
(i.e., from the reductionist perspective) methods for regulating the 
system’s response. Systems biology approaches have been used to 
characterize epidemics and ways to control them, taking advantage 
of the scale-free properties of the network of infected individuals 
that constitute the epidemic. Through the use of a systems analysis 
of a neural protein-protein interaction network, unique disease-
modifying proteins have been identified that are common to a wide 
range of cerebellar neurodegenerative disorders that cause inher-
ited ataxias. Systems biology models have been used to dissect the 
dynamics of the inflammatory response using oscillatory changes 
in the transcription factor NF-kB as the system output. Systems 
biology principles also have been used to predict the develop-
ment of an idiotypy–anti-idiotypy antibody network, describe the 
dynamics of species growth in microbial biofilms, and analyze 
the innate immune response. In each of these examples, a systems 
(patho)biology approach provided insights into the behavior of 
these complex systems that could not have been recognized with 
conventional scientific reductionism. 

 A unique application of systems biology to biomedicine is in 
the area of drug development. Conventional drug development 
involves identifying a potential target protein and then designing or 
screening compounds to identify those that inhibit the function of 
that target. This reductionist analysis has identified many potential 
drug targets and drugs, yet only when a drug is tested in animal 
models or humans are the systems consequences of the drug’s 
action apparent; not uncommonly, so-called off-target effects may 
become apparent and be sufficiently adverse for researchers to 
cease development of the agent. A good example of this problem 
is the unexpected outcomes of the vitamin B–based regimens for 
lowering homocysteine levels. In these trials, plasma homocysteine 
levels were reduced effectively; however, there was no effect of this 
reduction on clinical vascular endpoints. One explanation for this 
outcome is that one of the B vitamins in the regimen, folate, has a 
panoply of effects on cell proliferation and metabolism that prob-
ably offset its homocysteine-lowering benefits, promoting progres-
sive atherosclerotic plaque growth and its consequences for clinical 
events. In addition to these types of unexpected outcomes exerted 
through pathways that were not considered ab initio, conventional 
approaches to drug development typically do not take into consid-
eration the possibility of emergent behaviors of the organism or the 
metabolic pathway or the transcriptional network of interest. Thus, 
a systems-based analysis of potential drugs (drug-target network 
analysis) can benefit the development paradigm both by enhancing 
the likelihood that a compound of interest will not manifest unfore-
seen adverse effects and by promoting novel analytic methods for 
identifying unique control points in metabolic or genetic networks 
that would benefit from drug-based modulation.  

  SYSTEMS PATHOBIOLOGY AND HUMAN  �
DISEASE CLASSIFICATION 

 Perhaps most important, systems pathobiology can be used to 
revise and refine the definition of human disease. The classification of 
human disease used in this and all medical textbooks derives from 
the correlation between pathologic analysis and clinical syndromes 
that began in the nineteenth century. Although this approach has 
been very successful, serving as the basis for the development of 
many effective therapies, it has major shortcomings. Those short-
comings include a lack of sensitivity in defining preclinical disease, 
a primary focus on overtly manifest disease, failure to recognize 

different and potentially differentiable causes of common late-stage 
pathophenotypes, and a limited ability to incorporate the growing 
body of molecular and genetic determinants of pathophenotype 
into the conventional classification scheme. 

 Two examples will illustrate the weakness of simple correlation 
analyses grounded in the reductionist principle of simplification 
(Occam’s razor) in defining human disease. Sickle cell anemia, the 
“classic” Mendelian disorder, is caused by a Val6Gln substitution 
in the β chain of hemoglobin. If conventional genetic teaching 
holds, this single mutation should lead to a single phenotype in 
patients who harbor it (genotype-phenotype correlation). This 
assumption is, however, false, as patients with sickle cell disease 
manifest a variety of pathophenotypes, including hemolytic anemia, 
stroke, acute chest syndrome, boney infarction, and painful 
crisis, as well as an overtly normal phenotype. The reasons for 
these different phenotypic presentations include the presence of 
disease-modifying genes or gene products (e.g., hemoglobin F, 
hemoglobin C, glucose-6-phosphate dehydrogenase), exposure to 
adverse environmental factors (e.g., hypoxia, dehydration), and 
the genetic and environmental determinants of common inter-
mediate pathophenotypes (i.e., variations in those generic patho-
logic mechanisms underlying all human disease—inflammation, 
thrombosis/hemorrhage, fibrosis, cell proliferation, apoptosis/
necrosis, immune response). 

 A second example of note is familial pulmonary arterial hyper-
tension. This disorder is associated with 50 different mutations 
in three members of the transforming growth factor β (TGF-β) 
superfamily: bone morphogenetic protein receptor-2 (BMPR-2), 
activin receptor-like kinase-1 (Alk-1), and endoglin. All these dif-
ferent genotypes are associated with a common pathophenotype, 
and each leads to that pathophenotype by molecular mechanisms 
that range from haploinsufficiency to dominant negative effects. As 
only approximately one-fourth of individuals in families that har-
bor these mutations manifest the pathophenotype, other disease-
modifying genes (e.g., the serotonin receptor 5-HT2B, the serotonin 
transporter 5-HTT), genomic and environmental determinants of 
common intermediate pathophenotypes, and environmental expo-
sures [e.g., hypoxia, infective agents (HIV), anorexigens] probably 
account for the incomplete penetrance of the disorder. 

 On the basis of these and many other related examples, one can 
approach human disease from a systems pathobiology perspective 
in which each “disease” can be depicted as a network that includes 
the following modules: the primary disease-determining elements 
of the genome (or proteome, if posttranslationally modified), the 
disease-modifying elements of the genome or proteome, environ-
mental determinants, and genomic and environmental determi-
nants of the generic intermediate pathophenotypes.   Figure e19-2   
graphically depicts these genotype-phenotype relationships for the 
six common disease types with specific examples for each type. 
  Figure e19-3   shows a network-based depiction of sickle cell disease 
using this kind of modular approach. 

 Goh and colleagues developed the concept of a human disease 
network (  Fig. e19-4  ) in which they used a systems approach to 
characterize the disease-gene associations listed in the Online 
Mendelian Inheritance in Man database. Their analysis showed that 
genes linked to similar disorders are more likely to have products 
that associate and greater similarity between their transcription 
profiles than do genes not associated with similar disorders. In 
addition, proteins associated with the same pathophenotype are sig-
nificantly more likely to interact with one another than with other 
proteins not associated with the pathophenotype. Finally, these 
authors showed that the great majority of disease-associated genes 
are not highly connected genes (i.e., not hubs) and are typically 
weakly linked nodes within the functional periphery of the network 
in which they operate. 
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 This type of analysis validates the potential importance of defin-
ing disease on the basis of its systems pathobiologic determinants. 
Clearly, doing this will require a more careful dissection of the 
molecular elements in the relevant pathways (i.e., more precise 
molecular pathophenotyping), less reliance on overt manifesta-
tions of disease for their classification, and an understanding of 
the dynamics (not just the static architecture) of the pathobiologic 
networks that underlie pathophenotypes defined in this way. 

 As yet another potential consideration, one can argue that disease 
reflects the later-stage consequences of the predilection of an organ 
system to manifest a particular intermediate pathophenotype in 
response to injury. This paradigm reflects a reverse causality view 
in which a disease is defined as a tendency to heightened inflam-
mation, thrombosis, or fibrosis after an injurious perturbation. 
Where the process is manifest (i.e., the organ in which it occurs) is 
less important than that it occurs (with the exception of the organ-
specific pathophysiologic consequences that may require acute 
attention). For example, from this perspective, acute myocardial 
infarction (AMI) and its consequences are a reflection of throm-
bosis (in the coronary artery), inflammation (in the acutely injured 
myocardium), and fibrosis (at the site or sites of cardiomyocyte 
death). In effect, the major therapies for AMI address these 
intermediate pathophenotypes (e.g., antithrombotics, statins) 
rather than any organ-specific disease-determining process. This 
paradigm would argue for a systems-based analysis that would 
first identify the intermediate pathophenotypes to which a person 

is predisposed, then determine how and when to intervene to 
attenuate that adverse predisposition, and finally limit the likeli-
hood that a major organ-specific event will occur. Evidence for the 
validity of this approach is found in the work of Rzhetsky and col-
leagues, who reviewed 1.5 million patient records and 161 diseases 
and found that these disease phenotypes form a network of strong 
pairwise correlations. This result is consistent with the notion 
that underlying genetic predispositions to intermediate pathophe-
notypes form the predicate basis for conventionally defined end 
organ diseases. 

 Regardless of the specific nature of the systems pathobiologic 
approach used, these analyses will lead to a drastic revision of the 
way human disease is defined and treated. This will be a lengthy 
and complicated process but ultimately will lead to better disease 
prevention and therapy and probably do so from an increasingly 
personalized perspective. The analysis of pathobiology from a systems-
based perspective is likely to help define specific subsets of patients 
more likely to respond to particular interventions based on shared 
disease mechanisms. This approach is being applied to certain 
conditions, for example, the responsiveness of lung cancer patients 
with mutations in the epidermal growth factor receptor (EGFR) to 
erlotinib, an agent that targets EGFR. Although it is unlikely that 
the extreme of “individualized medicine” will ever be practical 
(or even desirable), complex diseases can be mechanistically sub-
classified and interventions may be tailored to those settings in 
which they are more likely to work.   
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  Figure e19-2       Examples of modular representations of human disease . 
G, primary human disease genome or proteome; D, secondary human disease 

genome or proteome; E, environmental determinants; I, intermediate pheno-
type; P, pathophenotype.  (Reproduced with permission from Loscalzo et al.)    
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  Figure e19-3       A .  Theoretical human disease network illustrating 
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of the pathophenotypes . Key: G, primary disease genome or proteome; 
D, secondary disease genome or proteome; I, intermediate phenotype; 
E, environmental determinants; PS, pathophysiologic states leading to 

P, pathophenotype.   B  . Example of this theoretical construct applied to 
sickle cell disease. Key: Red, primary molecular abnormality; gray, disease-
modifying genes; yellow, intermediate phenotypes; green, environmental 
determinants; blue, pathophenotypes.  (Reproduced with permission from 
Loscalzo et al.)    
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  Figure e19-4       A .  Human disease network . Each node corresponds to a 
specific disorder colored by class (22 classes, shown in the key to   B  ). The 
size of each node is proportional to the number of genes contributing to the 
disorder. Edges between disorders in the same disorder class are colored 
with the same (lighter) color, and edges connecting different disorder classes 
are colored gray, with the thickness of the edge proportional to the number 

of genes shared by the disorders connected by it.   B  . Disease gene network. 
Each node is a single gene, and any two genes are connected if implicated 
in the same disorder. In this network map, the size of each node is propor-
tional to the number of specific disorders in which the gene is implicated. 
 (From Goh et al. Reproduced with permission from the National Academies 
Press.)    
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