
CompRef8 / UNIX: The Complete Reference / Rosen, Host, Klee, Rosinski, Farber & Chung / 336-9

X Window System

Editor’s Note: Cross-references in the text refer to chapters in the companion
book, UNIX: The Complete Reference, Second Edition, by Rosen, Host, Klee, Farber,
and Rosinski.

The user interface is the part of the UNIX System that defines how you interact with it—
how you enter commands and other information, and how the system displays prompts
and information to you. Chapter 7 discusses the KDE (K Desktop Environment), which is
the primary Linux user interface. Chapter 7 also discusses the CDE (Common Desktop
Environment), which is the user interface for Solaris, HP-UX, and a few other UNIX
systems (you can also get CDE as an add-on package for Linux). Both of these
environments were developed to provide a common user interface built on a graphical user
interface (GUI) concept called the X Window System, which is the topic discussed in this
chapter. This chapter is dedicated to UNIX users who either still use the X environment or
wish to understand how CDE, KDE, and other visual user interfaces, such as GNOME and
UDE, evolved, as well as the many toolkits that have been developed for these windows
management environments. This chapter does not attempt to help you configure X, since
the procedures are specific to the variant of UNIX that you run and can be very detailed.
Much better sources of information are available with the X implementation that you choose
to run on your system. Rather, this chapter is devoted to understanding the underlying
principles for the many GUIs that have been built on top of the X Window System.

The user interface is sometimes referred to as the system’s “look and feel.” For a number
of users, the primary interface to the UNIX System is the command-line interface provided
by the shell. But GUIs such as X provide a more visual way to interact with the system that
is easier, more effective, and more enjoyable.

GUIs replace the command-line style of interacting with the UNIX System with one based
on menus, icons, and the selection and manipulation of objects. Instead of having to remember
commands and command options, you work directly with graphical representations of objects
(files, programs, pictures, lists) and select actions from menus rather than typing their names.

Graphical interfaces are now in common use on PCs running environments such as
Windows 2000/XP, and UNIX System GUIs share many features with them. However,
graphical user interfaces for the UNIX System have some special characteristics that meet
the particular needs of UNIX System applications. Specifically, to be generally usable with
the UNIX System, graphics environments must support networked applications, must
permit applications to be independent from specific display and terminal hardware, and
must allow graphics applications to be easily portable across the variety of hardware that

1

Windows.indd 1 1/11/07 1:57:56 PM

CompRef8 / UNIX: The Complete Reference / Rosen, Host, Klee, Rosinski, Farber & Chung / 336-9

 2 U N I X : T h e C o m p l e t e R e f e r e n c e X W i n d o w S y s t e m 3

the UNIX System runs on. The original standard UNIX System graphics environment that
meets these needs is the X Window System.

Like most readers of this book, you have probably already used some windowing
system—perhaps the Apple Macintosh or some version of Microsoft Windows—and you
are probably familiar with the basic ideas of graphical user interface technology, such as
windows, a mouse, and mouse-operated menu selection. Although windows and graphical
user interfaces have become familiar through PC products such as Microsoft Windows as
well as the Macintosh, it was the modular, innovation-friendly architecture of the UNIX
System that enabled and pioneered the development of early windowing systems, such as
the Bell Laboratories BLIT and Sun Microsystems’ SUNVIEW, from which the developers of
the Apple Macintosh and of Microsoft Windows took their cue.

The X Window System incorporates all the user-interface capabilities of its contemporaries,
and it adds some very useful ones of its own. At the same time, it follows the UNIX philosophy
of being modular—and therefore innovation-friendly—because experimental replacements for
small modular tools are easier to build than replacements for a complex conglomeration of
operating system, windowing system, and user interface manager such as the Apple
Macintosh or Microsoft Windows 2000/XP. And following the UNIX tradition, it empowers
the user to customize the user interface to match his or her individual aesthetic preferences,
cognitive style, and work skills. This is the primary focus of this chapter: showing you how
you can take advantage of the flexibility and customizability of the X Window System on
UNIX to customize and individualize your work environment. Whatever system you have as a
starting point, this chapter will show you how to make it look, feel, and work the way you
want it to.

This chapter deals with the user’s view of the X graphical user interface, and how you
can use it to make your own UNIX System GUI environment. The discussion begins with an
overview of the X Window System and some popular UNIX GUIs. The rest of the chapter
focuses on how to customize the X environment to suit your own needs and preferences.

What Is the X Window System?
The X Window System is a comprehensive graphical interface and windowing environment
for developing and running applications having networked, graphical user interfaces. It
was developed by Project Athena at the Massachusetts Institute of Technology and is now
owned and distributed by the X Consortium. It became a standard component of most
UNIX systems, available as an add-on package from various software vendors or in a public
domain version.

The main concepts on which the X Window System is based include a client/server model
for how applications interact with terminal devices, a network protocol, various software tools
that can be used to create X Window–based applications, and a collection of utility
applications that provide basic application features.

The X Window System is the standard basic windowing system platform for current
versions of the UNIX System operating system, and for many others as well. The X Window
server, the software that actually controls the user interface hardware—your keyboard,
pointer, and one or more screens—often runs as a process under the UNIX system of a
personal computer or workstation; but it may run on other platforms, including computers
running Microsoft Windows or Apple Macintosh operating systems, and even stand-alone X
Window terminals, running the X server from firmware, without any operating system at all.

Windows.indd 2 1/11/07 1:57:56 PM

 2 U N I X : T h e C o m p l e t e R e f e r e n c e

CompRef8 / UNIX: The Complete Reference / Rosen, Host, Klee, Rosinski, Farber & Chung / 336-9

 X W i n d o w S y s t e m 3

The X Window System is a network windowing system. That means that an X server can
provide a user interface not only to client processes running on the same UNIX computer or
workstation as the X server itself, but also to programs running on other computers
connected to the same network—even a very large network such as the global Internet. You
can use the X server running on your own desktop from a computer located at a remote
location, even on the other side of the world. Some X Window System users in New Jersey
have used their desktop X servers to run client programs on machines as far away as New
Zealand and Singapore.

Under UNIX, the client connects at startup with the X server designated by the
environment variable value $DISPLAY, or by the argument that follows the –display option
on its command line. This value starts with an endpoint identifier, such as a DNS name
(such as “mymachine. myorg.net”) or an IP numerical address (such as 123.45.67.89). Three
reserved identifiers—unix, localhost, and (blank)—refer to X server processes running under
the same UNIX system as the client. The endpoint identifier is followed by a colon (:), and a
“display” number. This is a small number that identifies a specific X server at the given
endpoint address, usually a 0 (zero) on a platform that supports only one X server at a time.
Note that each X server is meant to control a complete set of user interface hardware:
screen(s), keyboard, and a pointer device such as a trackball or mouse. Some UNIX systems,
such as Sun workstations, can support several complete sets of user interface hardware
through backplane plug-in boards and associated X server processes. The final, optional
part of the display value is a period followed by the number of the screen on which the
client program is to display its windows. Platforms that support more than one video frame
buffer, such as Sun workstations, have X server software that can display client windows on
any one of them. The default screen of a display is always numbered “0.” The complete
value of $DISPLAY, or the argument after the –display command-line option, usually looks
something like mymachine:0.1 or 123.45.67.89:1.

A server is a process that lets several other processes—its clients—share some physical or
logical resource. Just as a file server lets several processes—usually the kernels of several
workstations—share the files on a central file system, an X server lets several client
processes share access to hardware that provides them with an interface to their human
user. This hardware—screen area, keyboard keys, pointer position and buttons—needs to be
shared among client processes in some way. With rare exceptions, an X server shares its
resources among client processes under the direction of a master client process called the
window manager.

The sharing of resources, such as screen area and keyboard keys, is done under user
control. This user control requires an interactive user interface: Most window managers
create and control a frame around each client window to let the user identify, move, resize,
and restack—to the top or bottom—application windows on the screen. Most window
managers also provide one or more menus, usually invoked from the window frame for
window-specific functions, and from the background, or root window, for other functions, for
example to refresh all windows (in case of a graphics malfunction) or to execute a UNIX
command (such as the xlock command to lock the screen and the keyboard until the user
unlocks it by typing the password).

The window manager client is special in some respects; for example, only one window
manager can connect to a single X server at a given time. But in many ways it is just another
client. For example, there is no requirement that the window manager run on the same
UNIX machine as the X server it controls—and for X servers running on dedicated

Windows.indd 3 1/11/07 1:57:56 PM

CompRef8 / UNIX: The Complete Reference / Rosen, Host, Klee, Rosinski, Farber & Chung / 336-9

 4 U N I X : T h e C o m p l e t e R e f e r e n c e X W i n d o w S y s t e m 5

hardware “X terminals,” the window manager, like all clients, must be run from UNIX
systems on the network. In addition to customization with resource variables, to be
discussed shortly, most window managers have one or more special initialization files to
define special capabilities, such as the content of menus.

The Client/Server Model
A fundamental X Window concept is the separation of applications from the software that
handles terminal input and output. All interactions with terminal devices—displaying
information on a screen, collecting keystrokes or mouse button presses—are handled by a
dedicated program (the server) that is totally responsible for controlling the terminal.
Applications (clients) send the server the information to be displayed, and the server sends
applications information about user input.

Separating applications (clients) from the software that manages the display (the server)
means that only the server needs to know about the details of the terminal hardware or how
to control it. The server “hides” the hardware-specific features of terminals from applications.
This makes it easier to develop applications, and it makes it relatively easy to port existing X
Window System applications to new terminals.

For example, suppose the instructions for drawing a line differ on two different terminals.
If an application communicates directly with the terminal, then different terminals require
different versions of the same application. However, if the specific hardware instructions are
handled by servers, one application can send the same instruction to the server associated
with each terminal, and the terminal server can map it into the corresponding control signals
for the terminal. As a result, the same application can be used with many different terminal
devices.

With the client/server model, each new terminal device requires a new server. But once a
server is provided, existing applications can work with that terminal without modification.

X applications (clients) can run on multiple hosts and on a workstation. These applications
are accessible from workstations or X terminals (servers) either on the same machine or
distributed in a network. Note that on the display there is no distinction between an X
application running on the local machine and one running on a remote machine.

The existence of a special server for each type of terminal is one part of the client/server
model. The other is the use of a standard way for client applications to communicate with
servers. This is provided by the X Window System protocol.

The X Protocol
The X protocol is a standard language used by client applications to send instructions to X
servers and used by servers to send information (for example, mouse movements) to clients.
In the X Window System, clients and servers communicate only through the X protocol.

The X protocol is designed to work over a network or within a single processor. The
messages that go between a client and a server are the same whether the client and server
are on the same workstation or on separate machines.

This use of a network protocol as the single, standard interface between client and server
means that X Window System applications, initially developed to run on a workstation that
has its own attached display, can automatically run over a network.

Windows.indd 4 1/11/07 1:57:57 PM

 4 U N I X : T h e C o m p l e t e R e f e r e n c e

CompRef8 / UNIX: The Complete Reference / Rosen, Host, Klee, Rosinski, Farber & Chung / 336-9

 X W i n d o w S y s t e m 5

The X Library
The X protocol is designed to work efficiently over a network. However, it is not a good
language for developers to use for developing applications. The X Window System provides
a standard set of C language routines that developers can use to program basic graphics
functions, and that automatically produce the corresponding X protocol. These routines are
referred to as the X library routines, or xlib. Xlib provides a standard programmer’s
interface to the X Window System.

Toolkits
Xlib itself provides relatively low-level functions. It deals with basic graphics elements like
drawing a line, filling a region, and so forth. To further simplify application development,
higher-level routines have been developed to produce more complex elements, for example
windows, menus, or scrollbars. Higher-level elements like these are called widgets. A toolkit
is sometimes called a widget set. Typical widgets include scrollbars, buttons, forms, and
similar components.

The X Window System distribution includes a library called the Toolkit Intrinsics (libXt,
with functions whose names begin with the “Xt” prefix). The Toolkit Intrinsics library is a
foundation on which different vendors can build toolkits that support their graphical user
interfaces. To provide vendors with an example of how libXt can be used to build a toolkit,
the X distribution includes a simple toolkit—the Athena toolkit from the MIT Athena
Project—and several sample applications, such as the popular terminal emulator XTerm,
built on top of the Athena toolkit.

Two groups of vendors developed widely used intrinsics-based toolkits. Olit, a toolkit
produced by Sun, AT&T, and Novell, supports the Open Look GUI standard, which is still
used by many UNIX users running System V Release 4. The Open Group (formerly the
Open Software Foundation), sponsored by many vendors including Hewlett-Packard, IBM,
DEC, and NCR, developed an intrinsics-based toolkit called Motif, which supports the
Common Desktop Environment (CDE) GUI, discussed in Chapter 7. Although these two
efforts started out as competing GUIs, the continued development efforts on both of the
native interfaces and their toolkits resulted in a richer, more useful set of capabilities that
have been merged into the CDE and its toolkit. This effort was largely accomplished by the
Common Open Software Environment (COSE) initiative. A brief history of this evolution is
also discussed in Chapter 7.

The Common Desktop Environment (CDE)
The Open Group (then OSF) produced the Motif toolkit and the Motif Window Manager
(mwm) to support the CDE GUI standard, favored by vendors who support both UNIX-
based workstations and Intel-based (Microsoft Windows, IBM OS/2) personal computing
environments. The CDE specification was originally developed by IBM to provide GUIs
compatible with the user interface of Microsoft Windows on other platforms such as OS/2
and UNIX/X. This specification was then standardized by the Open Group and has been
adopted for use by many different UNIX system vendors.

CDE addresses the need for user interface compatibility for people who must use
multiple computing platforms. For example, you might do most of your work under UNIX,
using its extensive customization capabilities and easy assembly of automated “work
engines” for specific work from application piece-parts. However, you may also need to run

Windows.indd 5 1/11/07 1:57:57 PM

CompRef8 / UNIX: The Complete Reference / Rosen, Host, Klee, Rosinski, Farber & Chung / 336-9

 6 U N I X : T h e C o m p l e t e R e f e r e n c e X W i n d o w S y s t e m 7

some packaged applications—for example, a print optimizer to enhance the production of
sophisticated color graphics on a specific color printer—that are simply not available for
UNIX and can only be used under Microsoft Windows or OS/2. A person who works in any
given user interface environment develops automatic work-optimizing habits that will be
carried, sometimes without conscious intention or awareness, to all their other work
environments. If the several environments used by the same human are incompatible—if
they require different actions and habits for equivalent steps in the human’s work—this
“transfer” of automatic habits from one environment to another would be negative, meaning
that it would interfere with doing the job, with results that might range from annoying to
disastrous. By specifying user interface components that look and work much like their
counterparts from Microsoft Windows, CDE not only prevents disasters that could result
from negative transfer of skills but encourages positive transfer, so that user habits formed in
each environment enhance the user’s performance in the other.

The CDE standard includes, in addition to the Motif toolkit and the Motif window
manager, a suite of applications designed to emulate, under the X Window System, most of
the frequently used Microsoft Windows tools: a file manager, session and application
managers, a calendar, a mailer, and a windowing shell. Some users find these tools to be less
attractive than the many sophisticated applications that are available for free in the UNIX
environment, which can be invoked with commands from a UNIX shell window. But for
users who must use equivalent applications under both MS Windows and UNIX, these CDE
applications are very useful. Some vendor distributions of the X Window System include
the Motif toolkit and mwm, but not the rest of the CDE applications and tools. The latter are
typically distributed in the directory /usr/dt (“dt” stands for “desktop”); if you have this
directory, then CDE applications and tools are available on your machine. They may be
customized with resource variables, in much the same way as other X Window System
applications built with any intrinsics-based toolkit.

The Window Manager
The window manager in the X Window System is a client application that provides the
basic window management and manipulation functions that you use in interacting with the
system. This includes the basic layout of windows, borders, menu appearance, the creation
and elimination of windows, moving windows, managing keyboard and color mappings,
and iconifying windows. Together, these functions make the window manager the main
determinant of the overall look and feel of your system.

Just as the UNIX System encouraged innovation in character-oriented user interfaces, or
“shells,” by moving user interface functions out of the operating system into a separate
module that could exist in many versions such as the C shell, Bourne shell, Korn shell, and
so on, so the X Window System puts its own interface with the user into a separate software
module called the window manager. And just as the modular nature of the shell led to
alternative shells, many alternative window managers have been developed. The X
Window System does not dictate a specific “look and feel,” the way a PC GUI such as
Microsoft Windows does, for example. Two different X Window System–based applications
can have very different appearances and styles of operation. They may differ in the ways in
which menus and actions are represented, in the way your application turns a window into
an icon, and in other fundamental features. Although this flexibility has value, the resulting
inconsistencies can defeat the potential benefits of having graphical interfaces.

Windows.indd 6 1/11/07 1:57:57 PM

 6 U N I X : T h e C o m p l e t e R e f e r e n c e

CompRef8 / UNIX: The Complete Reference / Rosen, Host, Klee, Rosinski, Farber & Chung / 336-9

 X W i n d o w S y s t e m 7

To avoid this problem, products were developed to provide a consistent user interface
both for the UNIX System as a whole and for applications from different vendors. One of
the two original UNIX window managers is the Motif Window Manager, mwm, from the
Open Group and its descendants, upon which CDE was built. The other is the Open Look
window manager, olwm, from Sun Microsystems, together with relatives like olvwm,
which manages windows on a “virtual screen” much larger than the real screen actually in
front of the user.

Most X Window System applications are built from general-purpose reusable software
objects called widgets and gadgets. Libraries of those objects are known as toolkits. The most
popular toolkits follow either the Motif/CDE or the Open Look user interface conventions;
mwm and olwm were written to work in ways consistent with the widgets of Motif and
Open Look toolkits.

Motif has a GUI look and feel that was developed by the Open Group (formerly OSF),
based on work by DEC and Hewlett-Packard. It was designed to be similar to Microsoft
Windows and IBM’s Presentation Manager.

Open Look (OL) was developed by Sun Microsystems and AT&T, based on previous
work by Xerox, and on previous Sun GUIs. It was originally the most common X Window
System GUI on Sun platforms, and it is still used heavily even though CDE exists.

Although there are clear differences in graphic design and appearance between Motif
and Open Look, and although there are differences in specific features (for example, Open
Look’s pinned menus), both Motif and Open Look will seem familiar to users of current
PC GUIs.

You should keep in mind that these CDE- or OL-compliant default environments are
just starting points. As you develop individual work habits and preferences that optimize
your personal productivity, you will be able to adjust your own X Window System
environment to whatever works best for you.

Functions of the Window Manager
One of the main functions of the window manager is to arbitrate the sharing of screen space
among the simultaneously active windows of different applications. For this reason, the
window manager controls the user’s interface for moving, resizing, and reshaping application
windows. Many window managers use the metaphor of overlapping sheets of paper on a
desktop to set up the stacking order of overlapping windows, giving the user the ability to
move windows “back,” to lie under others directly on the desk surface, or to the “front,”
metaphorically on top of all the other windows or papers, unobscured to the user. The
windows of temporarily unused applications can be iconified (referred to as minimized in the
CDE environment or closed in OpenLook) into a small, usually pictorial window called an
icon, again under the direction of the window manager. To control all of these window-specific
functions, most window managers display a frame around each application window, with
special mouse-draggable controls such as corners for resizing a window. The full set of other
window-specific functions is normally available from a menu, which appears when the
appropriate mouse button (the ACTION button in Motif, or the MENU button in OL) is
pressed in the title bar of the application window.

Besides the frames it puts up around each application window, the window manager
also controls the “root” window, the backdrop—analogous to the desktop surface in the
papers-on-desk metaphor—on top of which application windows are displayed. When you
operate the menu-evoking mouse button over the root window, you will get a menu of

Windows.indd 7 1/11/07 1:57:57 PM

CompRef8 / UNIX: The Complete Reference / Rosen, Host, Klee, Rosinski, Farber & Chung / 336-9

 8 U N I X : T h e C o m p l e t e R e f e r e n c e X W i n d o w S y s t e m 9

window manager functions that pertain to the whole X Window System server, and not just
to the window of some specific application. Some of these functions, such as locking up
your display until you type a password, or refreshing the content of all visible windows
(very useful if some malfunction messes up what you see—in more primitive windowing
systems, you would have to reboot your computer to do that!), or exiting from the X
Window System, may be built-in. You can add more functions—including menu items for
starting up additional applications—by editing a window manager startup file, such as
.mwmrc for mwm, or .openwin-menu for olwm. The format of the files that specify the
content of window manager menus is described in the window manager’s manual page.

Learning about Your Window Manager
One of the first things you will want to do when starting to use the X Window System is to
read the manual page—actually a technical document that may contain a dozen pages or
more—that describes your system’s window manager. You can do this by typing the man
command into any UNIX shell window. For example, use the following to get information
about the mwm window manager:

$ man mwm

This will tell you how the specific functions operate on your window manager. Remember
that on some systems, the man command will automatically invoke a pager such as more so
that you can read the man page one page at a time; on others, the content will scroll through
to the end, and you will need to use the scrollbar to page through it, or explicitly invoke a
pipe to your pager to read it, with a command such as this:

$man mwm | more

Client Applications
A large number of useful client applications have been written for the X Window System.
They are the GUI analogy to the standard UNIX System tools. A few of these clients are
xterm, xclock, xbiff, xlock, and xcalc.

The xterm Client
xterm is the standard X Window System terminal emulation client. It is probably the most
frequently used X application, because it provides a window in which you can run a shell,
run another UNIX command, or start up another X client. When you log in, you will
probably be placed in an xterm window. To start a new xterm window from an existing one,
simply type this:

$ xterm &

By default, your xterm window will include your shell (as specified in your SHELL
variable).

If you are using xterm, you should set your TERM variable this way:

TERM=xterm

Windows.indd 8 1/11/07 1:57:58 PM

 8 U N I X : T h e C o m p l e t e R e f e r e n c e

CompRef8 / UNIX: The Complete Reference / Rosen, Host, Klee, Rosinski, Farber & Chung / 336-9

 X W i n d o w S y s t e m 9

You can also create an xterm window for other commands. For example, you can run
the vi text editor in an xterm window with this command:

xterm -e vi doc

Quitting the shell (with the exit command or CTRL-D) also kills the xterm window in
which the shell was running. You can do the same thing by selecting exit in the xterm menu.
In general, when you kill an xterm window in this way, all applications running in it are
killed unless you used nohup to run them.

Some Other Useful X Clients
A large number of useful X clients are available. You may have many of these on your
system already, and you can obtain many others from software archives on the Internet.
Here are just a few X clients you may find useful:

• xemacs is an X Window implementation of the emacs editor, which is discussed in
detail in Chapter 5.

• xclock is a simple graphical clock application. You can display it by including a line
like this in your .xinitrc file:

xclock -analog geometry 113x113-5+-4 &

• xbiff notifies you of new e-mail messages. It displays an icon of a mailbox. When a
message arrives, it beeps and a flag on the mailbox is raised.

• xlock is a locking screen saver that keeps other people from viewing or using your
terminal until you enter your password.

• xcalc displays a calculator (either a TI-30 or an HP-10C). To run it use this
command:

$ xcalc &

Starting and Ending an X Window Session
To start an X Window Session, you log in and run a startup script. Exactly how you do this
varies slightly, depending on whether your system provides an X Window System server
running permanently on your display, or whether you have to explicitly start it. In either
case, the set of applications that will appear on your screen when you first start up the X
Window System is controlled by a file containing an executable shell script, either .xinitrc or
.xsession. If an X Window System server is not set up to be always running on your system,
you will probably start your X Window session by running a script that invokes xinit. This
is a program that starts up your X server and then executes the shell script in your $HOME/.
xinitrc. When the last command in your .xinitrc exits, xinit kills the X server process and
returns control to the shell from which it was invoked. On systems that have a permanent X
Window server you use a login window provided by a program called xdm (X Display
Manager) to log in. xdm then executes the shell script it finds in your $HOME/.xsession.
When the last command in your .xsession exits, xdm terminates your session and replaces it
with a new login window on the display.

Windows.indd 9 1/11/07 1:57:58 PM

CompRef8 / UNIX: The Complete Reference / Rosen, Host, Klee, Rosinski, Farber & Chung / 336-9

 10 U N I X : T h e C o m p l e t e R e f e r e n c e X W i n d o w S y s t e m 11

The order of programs in your .xinitrc or .xsession is fixed, as follows:

 1. First, you run the programs that customize your X Window environment: xrdb,
xset, xsetroot, xhost, xmodmap, and so on. Because application programs inherit
the resource variable values and keyboard maps that were in effect at their startup,
the customization programs have to be run first, synchronously, in the foreground,
so that the application programs won’t be started until the X Window environment
has been customized for them.

 2. Next, all the automatically started application programs must be fired up, asynchro-
nously (with an ampersand [&] to indicate asynchronous execution, that is, not waiting
for each application to terminate before starting up the next, to the UNIX shell).

 3. If you want to have an application always available but don’t need to use it
immediately, you can start it off pre-iconified, usually with the –iconic option on
the application startup command line.

 4. The last item of business in the .xinitrc or .xsession file is to start your window
manager synchronously (without the “&”). This is essential so that when the window
manager exits, the session script will also exit. Otherwise, you may wind up with
an X Window session without having a window manager to control it or terminate
it. If that happened, the only way to end the session and make your station
available for subsequent work might be to reboot the hardware.

Selection Buffers
The X Window System was designed for powerful engineering workstations with lots of
screen area, so that many different applications can appear on the screens and work
simultaneously. It is even possible to use two or more different display terminals, with
different application windows on separate screens. Unlike other windowing systems, which
often limit you to a full-size display of only one application at a time, the X Window System
enables the user to interact simultaneously with several active applications. A major
function of the X Window System is to facilitate communication among its concurrently
active clients. Most of this communication takes place automatically, without intervention
by the user. However, one very important form of communication between applications is
normally operated by the user. This is the selection buffer, which is used to transfer text
between different windows, simultaneously on the screen.

Using the selection buffer is similar to the cut-and-paste operations in Microsoft
Windows and other GUIs. You place text in the selection buffer by selecting it onscreen with
the “select” button on the mouse, usually the one operated by your index finger. To select
text, you move the mouse until the visible mouse cursor is located over the first character of
the text you wish to select, depress the select button, and with the button depressed, move
the mouse to the last character in your selection. The selection may span several lines. It
includes the newline character at the end of a line, if the region highlighted to show the
selection includes the area between the last character on the line and the edge of the text
window. You terminate the selection by lifting the select button. On some systems, you may
add text to an existing selection by sweeping it out with the opposite (“extend”) mouse
button depressed. Some X Window System applications provide other means of populating
the selection buffer. For example, the font selection utility xfontsel has a screen button that,

Windows.indd 10 1/11/07 1:57:58 PM

 10 U N I X : T h e C o m p l e t e R e f e r e n c e

CompRef8 / UNIX: The Complete Reference / Rosen, Host, Klee, Rosinski, Farber & Chung / 336-9

 X W i n d o w S y s t e m 11

when “pressed” (selected from the mouse), deposits the name of the currently displayed
font into the selection buffer.

Once selected, the content of the selection buffer may be entered into any text-based
widget in any application, or into a text-based application such as a terminal emulator (for
instance, xterm), just as though it had been typed from the keyboard. To do this, just shift
the input focus to the object you want to drop text into—this is often done by moving the
mouse until its cursor overlaps the text-accepting object—and press the “draw” or
“deposit” mouse button, usually the middle button of a three-button mouse. Because
different windows may belong to applications running on different machines, this is often a
convenient way to transfer small pieces of information from one UNIX system to another.
(Of course, some applications may limit the amount of text they will accept in this manner;
others may differ in their interpretation of newline characters included in the selection
buffer.) One of the most useful applications of selection buffers is to save the output of a
program for future reference after the program has run. This is like rerunning the command
with output to tee or a file in standard UNIX without X. It also gives you an easy way to
edit text or output on the fly.

Customization: Becoming a Power User of the X Window System
If you look at the display on the screen of a wizard or expert user, you will probably be
struck by the differences between it and your own screen. The screen background may
show a different picture every day. The scrollbars of the wizard’s XTerm windows may be
unobtrusively narrow with a solid yellow scrolling indicator on a deep red background,
instead of the wider, fuzzy gray that you seemed to be stuck with when you used XTerm.
The fonts and the background and foreground colors in the windows may be different. The
cursor may have a different shape from yours, maybe the shape of a little sailboat. The icons
for XTerm windows to different systems may have different shapes instead of the uniform,
easily confused appearance they have on your screen. And the “wizard” may seem rarely to
have to type anything, complicated commands appearing on the screen at the touch of a
single key, lines and paragraphs appearing highlighted under the mouse and then typing
themselves into other windows. And you may notice that when the wizard is typing and
needs to refer to something several screens back, the text scrolls without the wizard’s ever
having to move any fingers away from the keyboard to manipulate the mouse into the
scrollbar.

This section is all about how to do all these things, and a lot more. It is about how you
can make X Window System applications do things in ways that match the way you work
best, and look the way you like things to look when you work with them for hours at a
time. Unlike applications for other operating systems, which only can do the work they
were written to do in exactly the way they were written to do it, X Window System
applications were designed to be flexible for doing work that their authors could not
anticipate, in ways limited only by the knowledge and intelligence of the user. Challenges
that in other environments cannot be met without writing new programs, in X under UNIX
often require no more than putting together existing pieces with some new resource
variable values. By the end of this chapter, you will know what you need to be in full
control of your X Window System environment and applications. You can be as impressive
and productive as your “wizard” was.

Windows.indd 11 1/11/07 1:57:58 PM

CompRef8 / UNIX: The Complete Reference / Rosen, Host, Klee, Rosinski, Farber & Chung / 336-9

 12 U N I X : T h e C o m p l e t e R e f e r e n c e X W i n d o w S y s t e m 13

Before you go on, though, you should know one more thing: Wizards learn what they
know less from reading books than from experimentation, from trying things out. Trying
things out is often discouraged in school courses, and even on the job in some fields. A
programmer, for example, has the job of writing programs that will work on any processor
for a standard language, not that just happen to work on the one specific platform they were
experimentally tested on. But setting up your own work environment is different: You are
not trying to customize everybody’s work environment; just your own. So don’t hesitate to
try what you learn here, modify it, improvise. Experiment. Your knowledge of how things
were meant to work is just a starting point.

Using X Window System Resources
With rare exceptions, the behavior and appearance of X Window System applications are
controlled by a hierarchy of structured variables called resources. The values of resource
variables are stored in a database in the X server process; this permits any client application
that connects to your X Window System server to obtain their values, regardless of where
on the network it happens to be running. The shell script for starting up your X session,
usually .xsession or .xinitrc, includes, at the beginning, a command such as this:

xrdb -load .Xdefaults

This reads the content of a resource file, such as .Xdefaults in this example, into the resource
database on your X server. When an application program connects itself to your X server, it
reads these values and customizes itself accordingly. Most applications only read the
resource database once and then maintain a private copy of its values. Thus, it is possible to
start up one copy of an application, then change the content of the resource database, and
start up another copy of the application with an identical command line, and have it behave
differently because the values of some resource variables have changed.

The file from which the values in the resource database are read in has a very specific
format. It consists of lines separated by newline characters. Each line assigns a value to an
individual resource, or to a class of resources, pertaining to a specific object within some
application or to a class of such objects. If a single assignment of a value to a resource or
class of resources is too long to fit on one line in the file, intervening newlines may be
escaped with a backslash (\e) at the end of a physical line, to merge two or more physical
lines into a single “logical line.” And if a literal newline character needs to be incorporated
into the value assigned to a resource variable, it is written as “\en”. The resource file may
even include comments: Lines that start with an exclamation mark (!) in the first column are
ignored by xrdb but remain in the file for humans to read.

A Simple Specification
The simplest possible resource value assignment line in a resource file such as .Xdefaults
would assign a value to one specific resource of a specific X Window System object in a
specific application. It might look like this:

xclock.clock.hands: red

Windows.indd 12 1/11/07 1:57:59 PM

 12 U N I X : T h e C o m p l e t e R e f e r e n c e

CompRef8 / UNIX: The Complete Reference / Rosen, Host, Klee, Rosinski, Farber & Chung / 336-9

 X W i n d o w S y s t e m 13

This specification has three parts: xclock.clock, hands, and red. “Red” is the value being
assigned to the resource variable “hands” of the object with the object path “xclock.clock”. Let’s
look at each of these in turn.

The value “red” is a color, defined by a specific combination of intensities of red, green,
and blue light (RGB values) from the corresponding pixels on the screen. To find out what
pixel RGB values correspond to a named color, we could use this shell command:

$ showrgb | grep 'red$'
199 21 133 medium violet red
219 112 147 pale violet red
255 69 0 orange red
255 0 0 red
199 21 133 mediumvioletred
205 92 92 indianred
205 92 92 indian red
208 32 144 violetred
208 32 144 violet red
255 69 0 orangered
219 112 147 palevioletred

This tells you that “red” has the highest possible intensity of red light (255), and zero
intensity of green and blue. Note that the “d” in “red” must be the very last character on the
specification line. Although any blanks, tabs, and escaped newline characters between the
colon (:) and the first visible character of the value are discarded when the resource file is
being read in, any subsequent occurrences of these characters are included in the value
being assigned. Trailing spaces are easy to miss, but if you were to leave one in the file,
you’d be likely to get a diagnostic to the effect that the value “red ” (note the trailing space)
can’t be converted to a color pixel value. If the complaining software leaves out the
delimiting quotes, the trailing space is not visible, and the diagnostic may leave you
questioning the sanity of your software. Note also that a color need not be specified by
name, because a set of hexadecimal intensities is also acceptable. The latter is written as a
sharp sign (#) followed by three sets of two hexadecimal digits specifying red, green, and
blue intensity values. “Red,” for example, may also be written “#FF0000” (the hexadecimal
for 255 0 0).

The object path, “xclock.clock,” is a sequence of period-separated object names beginning
with the name of the running application object, and ending with the name of the specific
object that the resource variable being specified pertains to. xclock is a trivially simple
application with only one subordinate object (an instance of the “Clock” widget from the
Athena toolkit), but most applications are much more complicated, with objects within
objects within objects. Relevant objects (usually “widgets” or “gadgets”) within applications
are usually documented in the manual page. For example, you can get information about
xclock with this shell command:

$ man xclock

This manual page states that the instance name of the “Clock” widget is “clock.” This is an
example of the convention of giving widget instances names that are lowercase transliterations
of the widget class name. The default application instance name, used whenever a different
name has not been specified on the command line that started the application and also

Windows.indd 13 1/11/07 1:57:59 PM

CompRef8 / UNIX: The Complete Reference / Rosen, Host, Klee, Rosinski, Farber & Chung / 336-9

 14 U N I X : T h e C o m p l e t e R e f e r e n c e X W i n d o w S y s t e m 15

documented in the manual page, is usually the same as the application’s startup
command—in this case, xclock. A different instance name may be specified for most X
Window System applications with the –name command-line option. For example, to assign
the name “GMT” to an xclock showing Greenwich Mean Time, the shell command might
be this:

$ TZ=GMT xclock -name GMT &

The color of the hands for the GMT xclock would then be specified by a line in the
resource file such as this:

GMT.clock.hands:blue

The initial resource setting would still apply to instances of “Xclock” with the default
name “xclock.” Using the application’s class name, “Xclock,” would apply the resource to all
instances of the class, unless overridden by the higher precedence of a specification by
instance name. For example, the following lines will give a cyan background to all Xclocks
except for the one for Rome, which will be painted magenta:

Xclock.clock.background:cyan
Rome.clock.background:magenta

Another example is shown here:

xclock.clock.hands: red

Here, “hands” is the instance name of the resource variable to be assigned the value “red.”
According to the xclock man page, “hands” is a resource that controls the color of the
inside portion of the hands of the clock. It is one of three instance resource variables in the
class Foreground. The other two are “highlight,” the color of the edges of the hands, and
“foreground,” the color of the ticks. It is possible to specify the colors of all three
separately, by using the names of the individual resources. It is also possible to specify a
color for all three together, or with individually specified exceptions, by using the resource
class Foreground. The following, for example, specifies blue ticks and hand edges, with red
hand bodies:

xclock.clock.Foreground:blue
xclock.clock.hands: red

You also have the option of creating a multilevel hierarchy of resource (or object) classes
and subclasses. And the same class mechanism that applies to instances and classes of
application objects and of resource variables also applies to other objects such as widgets
and gadgets within applications. For example, all the pushbuttons in an application
typically belong to the class “PushButton,” horizontal and vertical scrollbars belong to the
class “scrollbar,” and so on.

The Asterisk Notation
The asterisk (*) notation lets you assign resource variable values to all members of any
named class in an application, regardless of the details of the object hierarchy intervening
between any of them and the corresponding application object. You can even use the

Windows.indd 14 1/11/07 1:57:59 PM

 14 U N I X : T h e C o m p l e t e R e f e r e n c e

CompRef8 / UNIX: The Complete Reference / Rosen, Host, Klee, Rosinski, Farber & Chung / 336-9

 X W i n d o w S y s t e m 15

asterisk notation to specify resource values for all objects (except for more specifically
detailed exceptions) of a given class across applications, or a value for all resources that
share a specific name, or that belong to the same named class regardless of the object to
which they pertain. In a resource specification line, an asterisk may be substituted for any
number, from zero on up, of dot-separated objects in the object hierarchy. For example,
consider these specifications:

*fontList: lucidasans-typewriterbold
Mosaic*XmTextField*fontList: lucidasans-bold

This means that the value “lucidasans-typewriterbold” will be assigned to all resource
variables named “fontList” in all objects in all applications, with the exception of those
assigned more specifically. The second line is such an assignment: the value “lucidasans-bold”
(a similar font, but with proportional rather than fixed character spacing) is assigned to the
fontList resources that pertain to XmTextField widgets in applications of class “Mosaic.”

Sometimes more than one line in a resource file will appear to apply to some resource
variable. The X Window System toolkit library “Xt” (also called “Toolkit Intrinsics”) tries to
apply the potentially conflicting specifications from left to right, and it chooses the more
specific one—the one for the instance name rather than the class name, or the one bound to
its parent in the hierarchy by a period (.) instead of an asterisk (*). Most often, though, the
best way to determine the effect of a resource specification is to experiment. Indeed,
experimentation is generally the best way anyone has to settle any question about how
things actually work in the X Window System, and what actually needs to be done.

In experimenting, or to override some specific resource value in specific cases, you can
use the –xrm command-line option with most X Window System applications. Want to see
how xclock would look with yellow hands? From your shell, try this:

$ xclock -xrm “*hands:yellow” &

If you want to be even more sophisticated, there is a whole hierarchy of files and other
sources of resource values. They are, from the lowest and most easily overridden, to the
highest and stickiest:

• A resource file supplied by the author of the application, bearing the name of the
application class, in directory /usr/lib/X11/app-defaults or another directory pointed
to by the environment (shell exported) variable value $XFILESEARCHPATH.

• An application-specific resource file, bearing the application class name, in directory
$XUSERFILESEARCHPATH or $XAPPLRESDIR.

• Resources that were loaded into the server with the xrdb command, or if none were
loaded, those in file $HOME/.Xdefaults on the machine on which the application is
being executed.

• Resources specified in the value of $XENVIRONMENT.

• Resources specified with –xrm command-line options.

• Resource values hard-coded into the application by user-hostile programmers.

If your workstation supports several screens, you may wish to set different resources for
them, for example, color resources for a color screen and monochrome resources for a

Windows.indd 15 1/11/07 1:57:59 PM

CompRef8 / UNIX: The Complete Reference / Rosen, Host, Klee, Rosinski, Farber & Chung / 336-9

 16 U N I X : T h e C o m p l e t e R e f e r e n c e X W i n d o w S y s t e m 17

monochrome screen. X Window System releases 5 and higher support SCREEN_ RESOURCES
properties for the different screens in addition to the RESOURCE_ MANAGER property that
holds the resource database for all the screens together. If you get that far, the manual page of
xrdb will tell you how to use this capability.

Color
As in the earlier xclock example, colors are one of the easiest features to customize through
resources. Almost every object has at least two color resources, background and foreground.
Widgets that appear inside other widgets often also have an optional border around them,
specified with resources borderWidth (in pixels, 0 means no visible border) and borderColor.

If any additional color resources can be specified, they are listed in the object’s
(application’s or widget’s) manual page. Most application manual pages bear the lowercase
name of the application. Widget manual pages bear the name of the widget, usually starting
with an uppercase letter. The manual page will also list the classes—usually Background,
Foreground, or BorderColor—to which each color resource belongs. Colors may be specified
by name, using names from the color database as reported by showrgb, or with three two-
digit hexadecimal numbers in #RRGGBB format. The set of colors available on a given
screen is known, in X Window System terminology, as the screen’s visual.

Common visuals include monochrome (black and white), grayscale (usually with 8 bits
of resolution), true color (24-bit, with 8 bits for each of the three color intensities), and
mapped color, also called pseudo-color. Pseudo-color is the most frequently encountered X
Window System visual. Pseudo-color screens can display up to 256 different colors at one
time—the number that can be represented with one byte value per color—out of 16 million
(2 to the 24th power) specifiable true colors. The one-byte values in the computer’s video
memory are mapped to the actually displayed colors by a colormap with up to 256 color
cells. Unless you are a graphic artist or plan to view color photographs on your computer
screen, you probably won’t have to deal with the details of color mapping. Some window
managers (such as olwm) and platform customization tools (xset) have facilities for
manipulation of colormaps. If they do, they are described in their manual pages.

Using color resources is usually fairly straightforward unless you use both color and
monochrome screens. If you do, it may be worth your while to write, and load, different
resource files for color and monochrome screens. There is no simple way to determine
whether any specific color will be displayed on a monochrome screen as black or as white;
the X Window System libraries actually use a computational model of the human visual
system to decide whether a given combination of red, green, and blue light intensities
should be represented by black or white for the human eye. The need to customize colors is
frequently associated with applications that make default color assignments without
considering the usability of the application on a monochrome screen.

Bitmaps and Pixmaps
Bitmaps and pixmaps are native image representation formats in the X Window System.
Pixmaps may have any depth that corresponds to the number of bits per pixel in some X
Window System visual. Bitmaps are monochrome (depth 1) pixmaps. Wherever a pixmap is
expected, a bitmap may be used, but not vice versa. Under the UNIX System operating
system, X Window System bitmaps and pixmaps are stored as ordinary files.

Windows.indd 16 1/11/07 1:57:59 PM

 16 U N I X : T h e C o m p l e t e R e f e r e n c e

CompRef8 / UNIX: The Complete Reference / Rosen, Host, Klee, Rosinski, Farber & Chung / 336-9

 X W i n d o w S y s t e m 17

Besides their obvious application in the storage of images, bitmaps are used in the X
Window System in a number of ways, including defining the background textures of object
windows, for the mask and image shapes of the pointer cursor, for icons, and for glyphs
(pictorial elements of composed graphics). A font is just a collection of numbered bitmaps
and doesn’t have to be used only for the characters of a written language. There are fonts
that contain icons, cursors, glyphs, even images of game pieces for chess and other games.
Fonts used to represent characters are discussed later on in this chapter.

Most widgets that present text or graphics have a backgroundPixmap resource and a
borderPixmap resource. These resources were provided so that object windows on
monochrome screens could have backgrounds that would contrast with both white and
black characters and graphics, and borders that would be visible against both white and
black backgrounds of other windows. The bitmap usually used for these purposes is /usr/
include/X11/bitmaps/gray. In theory, however, any other bitmap could be substituted. This
means that many X Window System widgets may be shown with backgrounds of fancy
patterns or pictures. This is occasionally useful but should not be casually applied to
widgets whose use, such as readable display of text, would conflict with a distracting
background.

Pixmap resources accept the path of any pixmap file as a legal value, not just the files in
the standard X11 bitmaps directory. You can edit your own bitmaps with the bitmap client
(for information, read the manual page: man bitmap). Different software vendors’ editions
of the UNIX System often include additional tools, such as Sun Microsystems’ iconedit,
which can create multicolor pixmaps.

You can use your own bitmaps to customize the icons of most applications (with
resources iconPixmap and iconMask), or the window manager’s (root window’s) cursor, with
this command:

$ xsetroot -cursor \e
/usr/include/X11/bitmaps/star \e
 /usr/include/X11/bitmaps/starMask

You can substitute any other pair of foreground and mask bitmaps.
Bitmaps are also customizable in applications that display pictorial elements, such as

xbiff, or that use variable graphic elements. One use of this capability is in customizing the
scrollbar of xterm:

XTerm*scrollbar.width: 7
XTerm*scrollbar.background: red
XTerm*scrollbar.foreground: yellow
XTerm*scrollbar.thumb: \e
 /usr/openwin/share/include/X11/bitmaps/black

By default, the scrollbar “thumb” is given a gray bitmap that contrasts with both available
colors on a monochrome screen. These settings give you red-with-yellow contrast instead;
and because solid colors look much better than patterns on a color screen, this example
includes a black (all bits on) bitmap.

Windows.indd 17 1/11/07 1:58:00 PM

CompRef8 / UNIX: The Complete Reference / Rosen, Host, Klee, Rosinski, Farber & Chung / 336-9

 18 U N I X : T h e C o m p l e t e R e f e r e n c e X W i n d o w S y s t e m 19

Fonts
Fonts are used in the X Window System for many collections of bitmaps. For example, most
applications choose their cursors from the standard cursor font. If you like the sailboat
cursor in XTerm, use this:

XTerm*pointerShape:sailboat
XTerm*pointerColor:blue
XTerm*pointerColorBackground:yellow

You can examine all the glyphs in any given font with xfd, the X font display utility. For
example, you can see all the available fonts with this command:

$ xfd -fn cursor&

You can read their names, prefixed with “XC_”, in /usr/include/X11/cursorfont.h.
As you would expect, the main use of fonts is to display text. On a typical workstation,

the X Window System may include hundreds of fonts to display ordinary characters. Many
more are available over the Internet in various FTP archives, including the contrib archive of
contributed X Window System software at ftp.x.org. You can bring any font over to your
workstation and make it available to your X Window System server by including its
directory in $FONTPATH.

A complete list of the fonts available in the directories in your $FONTPATH can be
obtained from the xlsfonts command.

Some fonts have brief aliases that also appear in the output of xlsfonts, but the typical
full name of a font is a list of attributes that usually looks something like this:

-b&h-lucida sans typewriter-medium-r-normal-sans-18-180-72-72-m-110-iso8859-1

Every dash-separated element identifies some specific attribute of the font. When setting the
various font and fontList resources, you can use either an alias, or the full name, or one with
asterisks standing in for those attributes you don’t care about.

The following are some font resources that you may find useful:

BoldFont: -b&h--bold-r-*-*-14-*-*-*-m-*-*-*
ButtonFont: -b&h--bold-r-*-*-14-*-*-*-p-*-*-*
Font.Name: -b&h--bold-r-*-*-12-*-*-*-m-*-*-*
Font: -b&h--bold-r-*-*-14-*-*-*-m-*-*-*
*IconFont: avantgarde-demi
ItalicFont: --*-*-o-*-*-14-*-*-*-m-*-*-*
TextFont: -b&h--bold-r-*-*-14-*-*-*-m-*-*-*
TitleFont: -b&h--bold-r-*-*-12-*-*-*-p-*-*-*
Mosaic*AddressFont: -adobe-times-medium-i-normal-*-14-*-*-*-*-*-iso8859-1
Mosaic*BoldFont: -adobe-times-bold-i-normal-*-14-*-*-*-*-*-iso8859-1
Mosaic*FixedFont: -b&h-*-bold-r-*-*-14-*-*-*-m-*-*-*
Mosaic*Font: -adobe-times-medium-r-normal-*-14-*-*-*-*-*-iso8859-1
Mosaic*Header3Font: -adobe-times-bold-i-normal-*-14-*-*-*-*-*-iso8859-1
Mosaic*ItalicFont: -adobe-times-medium-i-normal-*-14-*-*-*-*-*-iso8859-1
Mosaic*XmText*fontList: lucidasans-typewriterbold
Mosaic*XmTextField*fontList: lucidasans-bold
Mosaic*fixedboldFont:-b&h-*-bold-r-*-*-14-*-*-*-m-*-*-*

Windows.indd 18 1/11/07 1:58:00 PM

 18 U N I X : T h e C o m p l e t e R e f e r e n c e

CompRef8 / UNIX: The Complete Reference / Rosen, Host, Klee, Rosinski, Farber & Chung / 336-9

 X W i n d o w S y s t e m 19

Mosaic*fixeditalicFont:-adobe-courier-bold-o-*-*-14-*-*-*-m-*-*-*
Mosaic*font:\-adobe-new century schoolbook-bold-r-normal—14-140-75-75-p-87-
iso8859-1
Mosaic*fontList:\ -b&h-lucida sans-bold-r-normal-sans-10-100-72-72-p-67-
iso8859-1
Mosaic*listingFont:-b&h-*-bold-r-*-*-14-*-*-*-m-*-*-*
Mosaic*plainFont:-b&h-*-bold-r-*-*-14-*-*-*-m-*-*-*
Mosaic*plainboldFont:-b&h-*-bold-r-*-*-14-*-*-*-m-*-*-*
Mosaic*plainitalicFont:-adobe-courier-bold-o-*-*-14-*-*-*-m-*-*-*

Note that the type-of-spacing attribute is always “p” for proportionally spaced fonts but
may be either “c” or “m” for constant-width fonts.

There is also a tool, called xfontsel, that you can use to interactively select the fonts that
you prefer for a particular application. For each attribute in the standard font name format
you get a menu from which you can select either some specific value of the relevant
attribute or an asterisk (*) for “any.” xfontsel can display the string of your choice in the
selected font (read the manual page for details), and it has a button for placing the current
selection string in the test selection buffer, so you can “drop” it directly into a resource or
other file you might be editing.

The very wide variety of available fonts can be used not only to enliven the appearance
of your screen, but also to display different kinds of text differently, so that they can be
quickly distinguished from each other.

The Keyboard and Mouse
The user communicates with X Window System applications and with other clients, such as
the window manager, through a pointer such as a mouse or joystick and a keyboard. Mouse
movement has two customizable parameters: acceleration and threshold. Mouse
acceleration and threshold are X server parameters. Like all server parameters, they can be
customized with the xset utility. The mouse, or whatever pointer your machine is connected
to, will go acceleration times as fast when it travels more than thresholdpixels in a short time.
This allows you to set the mouse so that it can be used for precise alignment when it is
moved slowly, and still travel across the screen in a flick of the wrist when you move it
quickly. xset is typically used at the beginning of the .xinitrc shell script. The following
setting accelerates the cursor movement four times whenever the mouse is moved rapidly
more than two pixels:

$ xset m 4 2

All user input, other than mouse movement, consists of depressing and releasing
pointer buttons and keyboard keys. The server sends an event message to the application
each time the user presses or releases a mouse button or a keyboard key. The client-side X
Window System library, through which the client application communicates with the server,
keeps a mapping table, or keyboard map, to translate the hardware-generated key codes
identifying the keys and buttons to meaningful key symbols that the application can use. The
keyboard map is loaded when the application starts, so separate instances of the same
application can be started at different times with different keyboard maps.

Windows.indd 19 1/11/07 1:58:00 PM

CompRef8 / UNIX: The Complete Reference / Rosen, Host, Klee, Rosinski, Farber & Chung / 336-9

 20 U N I X : T h e C o m p l e t e R e f e r e n c e X W i n d o w S y s t e m 21

The symbol received by the application may depend not only on which keyboard key
was pressed or released, but also on the up-or-down state of up to eight other keys, called
modifiers: shift, control, caps lock, number lock, alt, and meta. You can get the modifier list for
your X server with this command:

$ xmodmap -pm

On a Sun workstation, this will typically produce something like the following:

xmodmap: up to 3 keys per modifier, (keycodes in parentheses):
shift Shift_L (0x6a), Shift_R (0x75)
lock Caps_Lock (0x7e)
control Control_L (0x53)
mod1 Meta_L (0x7f), Meta_R (0x81)
mod2 Mode_switch (0x14)
mod3 Num_Lock (0x69)
mod4 Alt_L (0x1a)
mod5 F13 (0x20), F18 (0x50), F20 (0x68)

On a GraphOn terminal, the same command will produce something like this:

xmodmap: up to 3 keys per modifier, (keycodes in parentheses):

shift Shift_R (0xad), Shift_L (0xae)
lock Caps_Lock (0xb0)
control Control_L (0xaf)
mod1 Alt_L (0x5c), Alt_R (0xac)
mod2 Num_Lock (0xa5)
mod3 F13 (0x73), F18 (0x81)
mod4
mod5

Note that keys other than SHIFT, CAPSLOCK, and CTRL may have different modifier designations
on different servers. For example, numeric lock is mod3 on the Sun but mod2 on the GraphOn.
The remaining, noncontrol keys may each carry up to four key symbols in the keyboard map.
The symbol returned to the application will be determined by the X library from the map and
the state of the modifier keys. You can get the current keyboard map with this command:

$ xmodmap -pk

The most important use of xmodmap is to customize the keyboard by changing the
keyboard map. Typically this is done to move keys to where you are accustomed to finding
them, or to obtain key symbols that are not in the default keyboard map. Suppose, for
example, you have an old and obsolete AT&T 730X X terminal. For efficient editing with the
UNIX vi editor the ESC key should be close to the letter area of the keyboard. The default
keyboard of that terminal has it uncomfortably far up, while the key with the grave and
ASCII tilde symbols is where you would want the ESC key. You can swap these key
assignments with these commands:

$ xmodmap -e 'keycode 106 = grave asciitilde'
$ xmodmap -e 'keycode 93 = Escape'

Windows.indd 20 1/11/07 1:58:00 PM

 20 U N I X : T h e C o m p l e t e R e f e r e n c e

CompRef8 / UNIX: The Complete Reference / Rosen, Host, Klee, Rosinski, Farber & Chung / 336-9

 X W i n d o w S y s t e m 21

Of course, if you want this key swap every time you use the terminal, you should put
those commands in your .xinitrc.

In the preceding example, and in most applications of xmodmap listed in its manual
page, you need to know the keycodes of the keys whose mappings you are going to modify
before you use xmodmap. An easy way to do this is to use xev.

When you start up xev, it will pop up a small window, with a second smaller window
inside it. Move this window out of the way, so it does not cover the shell window from
which you started xev. (The output of xev will go to the shell window, and it is important
that you be able to read it.) Next, move the mouse cursor into the xev window. Once the
flurry of activity from moving the window and the mouse subsides, you can press any key
you want and read the resulting event message. If you click the key, you will see two event
descriptions: key press and key release. Each description will include the key code you can
then use with xmodmap. To terminate xev, use the menu provided in its window-manager
frame, or type your interrupt character (usually CTRL-C or DELETE) into the shell window from
which you started xev.

You can add keys for input options omitted by the manufacturer of your equipment. For
example, you can scroll through many Motif applications page by page if you have PRIOR
and NEXT keys. The Sun type 4 keyboard has keys labeled PGUP and PGDN, but the default
keyboard map does not assign the corresponding symbols to these keys. You can do it
yourself in your .xinitrc:

xmodmap -e 'keycode 77 = Prior F29 KP_9 Prior' \
 -e 'keycode 121 = Next F35 KP_3 Next

Or maybe you miss a right-hand control key on that keyboard, but you don’t need its
“Compose” key. The following will fix the situation:

xmodmap -e “keycode 20 = Control_R” -e “add control = Control_R”

Note that assigning the key symbol “Control_R” was not enough; the key symbol also had
to be added to the “control” modifier list. If you wanted to change the symbols assigned to a
key already on a modifier list, you would have to remove it first. The xmodmap manual page
provides the example of swapping the left CTRL and CAPSLOCK keys. The two keys must first be
removed from their respective modifier lists, then swapped, and then put back on.

Finally, since the goal of the X Window System is to create an easy-to-use graphical
interface, it provides an X tool called xkeycaps that enables you to change your keyboard
mapping by using a GUI representation of your keyboard to do it.

Translations
Many X Window System applications have a Translation table, or “Translations” resource. The
translation table enables the user to direct the performance of nearly any action that the
application can perform with nearly any output. Although most applications have well-
thought-out default translation tables that really don’t need any user customization, and
others don’t have much in the way of interesting actions to assign events to, nearly
everyone will wish to customize some aspect of their shell/terminal emulation windows.
The following examples of Translations resource customization illustrate this for xterm.

Windows.indd 21 1/11/07 1:58:01 PM

CompRef8 / UNIX: The Complete Reference / Rosen, Host, Klee, Rosinski, Farber & Chung / 336-9

 22 U N I X : T h e C o m p l e t e R e f e r e n c e X W i n d o w S y s t e m 23

(The same methods are, of course, reusable with any application whose manual page
documents a translation table.)

The most common use of translation tables for xterm is to define strings sent by certain
keys. For example, suppose you leave your office open but lock your workstation. The
following example shows how you can translate a readily located key on your keyboard
(L9 in the example) to send the command to lock your X Window server with xlock,
allowing you to leave your office quickly:

XTerm*VT100.Translations: #override\
<Key>L9:string(“xlock -remote -mode random”)string(0x0d)

With this translation, hitting the key sends the specified command to the shell running
under the xterm. Sending the terminating RETURN is specified as a separate action, because
the hexadecimal code needed to specify a control character such as CR and quoted strings
of ordinary characters cannot be mixed in the same argument list to the action string().

This Translations resource applies to the VT100 emulation object in XTerm. The
qualification “#override” means that, with the exception of the events specified in the file, all
other event-to-action translations in the preexisting (default) translation table will remain in
force. Without this qualification, specifying a Translations resource for this one key would
wipe out nearly all the normal functionality of xterm.

Binding whole commands to single keys is the most common application of xterm’s
Translations resource, but it is just the starting point. For one thing, the keyboard is by no
means the only way to generate events that can trigger actions specified in a translation
table. For example, changing an xterm’s width or height results in an event called
“ConfigureNotify” or “Configure” for short. The command to reset the values of $LINES
and $COLUMNS so that size-dependent programs like vi will work correctly is shown here:

$ eval 'resize'

This can be automatically triggered by the “Configure” event:

XTerm*VT100.Translations: #override\e
<Configure>:string(“eval 'resize'”)string(0x0d)\en\e
<Key>L9:string(“xlock -remote -mode random”)string(0x0d)

Thus, as long as you only resize an XTerm window when a shell is running, you can be sure
that size-dependent programs will run correctly after every resize.

Why are all translations but the last terminated with “\n”? The reason is that the whole
translation table is the value of a single resource variable, and so the specification of this
value must be continued, at the end of every line but the last, with a “\” at the end of the
line. But the value of that resource variable is itself a table, consisting of separate lines, each
of which must be separated by its own newline character from the next. This newline
character is written as “\n” just before the “\” that continues the specification of the
translations to the next line.

Any action can be triggered by any event, so there is no enforced distinction between
what can be done by the pointer versus the keyboard. With the default translations, for
example, scrolling can only be done with the mouse. If you would like to be able to refer
to earlier text while typing, without having to take your hand off the keyboard to operate

Windows.indd 22 1/11/07 1:58:01 PM

 22 U N I X : T h e C o m p l e t e R e f e r e n c e

CompRef8 / UNIX: The Complete Reference / Rosen, Host, Klee, Rosinski, Farber & Chung / 336-9

 X W i n d o w S y s t e m 23

the mouse, you can add translations to operate the scrollbar with the PGUP and PGDN keys.
The previous section on keyboard mapping with xmodmap mentioned assigning the
symbols Prior and Next to those keys. The translations are shown here:

<Key>Prior:scroll-back(1,halfpage)\n\
<Key>Next:scroll-forw(1,halfpage)\n\

Because some continuity of context is helpful, this only scrolls half a page at a time. By
using windows with an odd number of lines, you can keep a line of continuous context
when you scroll through two half-pages by hitting the PGUP or PGDN key twice.

Just as the keyboard may be used for things that are usually done with the mouse, so
can mouse buttons be used for keyboard functions such as sending characters or strings to
applications and the shell. To send a carriage return (the default keyboard input) without
taking your hand off the mouse, you can assign CR to mouse button 3:

~Shift ~Ctrl ~Meta <Btn3Down>:string(0x0d)\n\
~Shift ~Ctrl ~Meta <Btn3Motion>:ignore()\n\

These translations are qualified by making them applicable only when neither SHIFT, nor
CTRL, nor META is pressed down. This prevents you from losing the ability to use XTerm’s
very useful “button 3 menu.” With these qualifications, you can still get the default
translation of button 3 down (presenting the menu) by pressing button 3 while holding down
one of the three tilde modifiers. Because the default translation for moving the mouse with
button 3 down is to extend the current text selection (something you don’t want to happen
by accident if you happen to move the mouse while clicking button 3 to go to the next mail
or news item), that translation is set to “ignore()”.

How to Find Out More
A number of excellent books are available on the X Window System, ranging from the
elementary to the highly sophisticated. Here are a few recommendations:

Asente, Paul, Donna Converse, and Ralph Swick. X Window System Toolkit: The Complete
Programmer’s Guide and Specification, X Version 11, Release 6 and 6.1. Woburn, MA:
Digital Press, 1998.

Mansfield, Niall. The Joy of X. Reading, MA: Addison-Wesley, 1994.

Quercia, Valerie, and Tim O’Reilly. X Window System User’s Guide. Sebastopol, CA:
O’Reilly, 1993.

Smith, Jerry D. X—A Guide for Users. Englewood Cliffs, NJ: Prentice Hall, 1994.

The Asente book provides detailed information about two of the newer releases of X.
The Mansfield book is a good overview of the system and includes a very handy format for
describing key features at a middle level of detail. Smith’s Guide for Users provides a more
detailed treatment and contains much description of specific screens and applications. For
information on more advanced X Window System topics such as protocols and
programming, consult the books in O’Reilly’s X Window System series.

Windows.indd 23 1/11/07 1:58:01 PM

CompRef8 / UNIX: The Complete Reference / Rosen, Host, Klee, Rosinski, Farber & Chung / 336-9

 24 U N I X : T h e C o m p l e t e R e f e r e n c e

To understand the evolution from Motif to CDE in developing X Window applications,
try the following book:

Mione, Antonino. CDE and Motif: A Practical Primer. Englewood Cliffs, NJ: Prentice Hall,
1997.

You will also want to read some of the periodicals devoted to the X Window System,
including The X Resource: A Practical Journal of the X Window System and X Journal.

Several newsgroups are devoted to the X Window System, including comp.windows.x,
which provides a general discussion of the X Window System; comp.x.announce for announce-
ments for the X Consortium; comp.windows.x.apps for a discussion on obtaining and using
applications that run on X; comp.windows.x.i386unix for a discussion of X Window Systems for
Intel-based UNIX PCs; and comp.windows.x.motif for a discussion on the Motif graphical user
interface. You will also want to read the FAQs that are posted periodically to comp.windows.x
and to news.answers.

Several useful web sites are devoted to the X Window System. In particular, to learn
more about how to configure and use the system, you should consult the official X site, the
X Consortium Web Server at http://www.x.org/. To find other sources of information about X,
look at http://www.x.org/ consortium/x_info.html.

Also take a look at http://www.rahul.net/kenton/xsites.html, which has links to well over
500 sites that pertain to the X Window System.

Windows.indd 24 1/11/07 1:58:01 PM

