The Tcl Family of Tools

UNIX: The Complete Reference, Second Edition, by Rosen, Host, Klee, Farber, and
Rosinski.

We have discussed some of the many tools available in the UNIX environment for creating
scripts, including the shell, awk, and perl, in the book. In this chapter we will discuss another
important set of tools, the Tcl family. Tcl (pronounced “tickle”) is a general-purpose command
language, developed in 1987 by John Ousterhout while at the University of California at
Berkeley, originally designed to enable users to customize tools or interactive applications by
writing Tcl scripts as “wrappers.” Although Tcl is ideally suited for this purpose, over the
years it has developed into a robust scripting language powerful enough to be used to write
tools or applications directly. Tcl is especially useful for building applications that use
graphical user interfaces, and it may be coupled with routines that use perl. Many web
applications are examples of this combination of Tcl with perl, as well as just Tcl applications.

Along with the Tcl language itself, several major Tcl applications have been written that
extend and complement the functionality of Tcl. Two of the most important Tcl applications
are Tk and Expect. Tk provides an easy means to create graphical user interfaces based on
the X11 toolkit for the X Window System. Expect is integrated on top of Tcl and provides
additional commands for interacting with applications. This enables users to easily automate
many interactive programs so that they do not have to wait to be prompted for input (which
cannot be done with shell programming). For example, Expect can be used for “talking” to
interactive programs such as ftp, rlogin, telnet, or tip. Other extensions to the Tcl/ Tk family
include XF, which takes the idea of Tk and puts a graphical user interface on it, thereby
making it even easier to build graphical user interfaces; Tcl-DP, which provides additional
commands to support distributed programming; and Ak, which is an audio extension that
provides Tcl commands for playback, recording, telephone control, and synchronization.

In many ways Tcl is analogous to perl or a UNIX shell in terms of the types of scripts for
which it can be used. Like perl or shell, Tcl is also an interpreted language, which means that
scripts are written and then directly executed by the Tcl interpreter, with no compilation of
the program required. The Tcl language, however, is considerably simpler than perl.
Moreover, Tcl and its extension applications make a robust functionality available.

Graphical components can be created with Tk, and communications between components
and processing of user input can be programmed with Tcl. With the combination of Tcl and Tk
it is possible to build fully functional graphical applications. Both of these languages are built
as C library packages, so it is possible to integrate C code into Tcl applications if needed.

E "ditor’s Note: Cross references in the text refer to chapters in the companion book,



UNIX: The Complete Reference

This is a plausible approach for larger applications or for implementing algorithms where
performance is a critical issue. The nice thing is that because Tcl and C are compatible you can
build large-scale applications that take advantage of the simplicity and flexibility of Tcl while
relying on the structure and high performance of C when necessary.

The tools available within Tcl have been or are being ported to a variety of operating
systems. This means that you can use your scripts with minor alterations on many different
platforms.

This chapter introduces Tcl, Tk, and Expect, providing enough information to help you
get started using these tools to build your own scripts. Refer to the end of this chapter for a
listing of FTP sites you can access to obtain these tools and for references that will help you
learn more about the Tcl family of tools.

Obtaining Tcl, Tk, and Expect

Tcl

You can obtain copies of Tcl, Tk, and Expect from various sites on the Internet. In particular,
you can obtain Tcl and Tk from http://www.tcl.tk/. You can obtain Expect from http://expect
.nist.gov. For additional information, you can read the latest version of the FAQ in the
newsgroup comp.lang.tcl or consult the Tcl/ Tk web page at http://www.tcl.tk/. See the section
“How to Find Out More” at the end of this chapter for details.

Tcl is a fairly simple interpreted programming language usually used for customizing tools
and applications, as well as for building your own simple tools and applications. Because
the Tcl commands are parsed and executed by an interpreter at run time, it is easy to
iteratively create a program. Rather than going through a new compilation step each time
you make a change to your program, all you need to do is run the Tcl command interpreter.
Many people find it more convenient to work with an interpreted language than a compiled
language because it is much quicker to test incremental changes. (Other interpreted
languages include perl, awk, and the shell.) This approach works particularly well for
programs of small to medium complexity where run-time performance is not an issue.

Learning the Tcl Language

As alanguage, Tcl is fairly straightforward and considerably more consistent and compact
than perl. The Tcl syntax is consistent for all its commands, so the rules for determining
how commands get parsed by the Tcl interpreter are easy to follow. Tcl itself contains
about 60 built-in commands, and each of the add-on applications in the family adds
additional commands.

A Tcl script consists of one or more commands that must be separated by newlines or
semicolons. Each command consists of one or more words, separated by spaces or tabs. The
Tcl interpreter evaluates commands in two passes. The first pass is a parse of the command
to perform substitutions and divide the command into words. Every command is parsed
according to the same set of rules, so the behavior of the language is extremely consistent
and predictable.

The second pass is the execution pass. This is when Tcl associates meaning to the words in
the command and takes actions. The first word of a command is always the command name,



The Tel Family of Tools

and the Tcl execution pass uses it to call a procedure for processing the remaining words

of the command, which are the arguments to the procedure. In general, each procedure has
a different set of arguments and a different meaning applied to it. The effect of this format
is that the rules for specifying the remaining words in a command after the command
name vary.

Getting Started with Tcl

You have two ways to run the Tcl interpreter. One way is to use an interactive shell, tclsh,
which accepts Tcl commands and outputs the results of these commands. This is handy for
testing various Tcl commands to get a feel for how they work. The second way is to create a
file that contains a Tcl program and execute it. This is how tools or applications written in
Tcl are created and distributed. A Tcl program written in this manner is commonly called a
Tcl script. Whether you use tclsh or create a Tcl script, the language is exactly the same. The
only difference is that the first line in a Tcl script consists of the pathname showing where
tclsh is located on your system so that the shell knows to call that interpreter instead of the
shell interpreter. For example (assuming that Tcl is installed on your machine under /usr/
local/bin), you can create a Tcl script by entering the following in a file named myscript:

#!/usr/local/bin/tclsh
expr 2 + 2

Now make myscript executable and execute it; tclsh will interpret it and return the number 4
as output. Note that the first line of the script tells your shell to call tclsh (this is a feature of
the shell). The second line contains a command, expr, which is a way to tell Tcl to evaluate
an expression.

To run Tcl interactively, type tclsh (assuming that Tcl is installed on your machine).
Because you are using the interactive Tcl shell, you can now enter Tcl commands. For
example, the command

expr 2 + 2

will print the result 4 to the screen. As mentioned earlier, the first word of each Tcl command
is always its name, expr in this case. This name is used by the Tcl interpreter to select a C
procedure that will carry out the function of the command. The remaining words of the
command are passed as arguments to the procedure. Each Tcl command returns a result string
(“4” in this case). This brings up one of the reasons Tcl is so easy to use—there are no type
declarations to variables or command arguments. Tcl automatically determines the type of the
variable according to the context of how it is used (as do awk and perl). For example, the set
command is used to assign a value to a variable name; the following lines are all legal Tcl
commands, where the variables being set are of type integer, real, and string, respectively:

set x 44
set y 12.2
set z "hello world"

Tcl knows this without requiring the user to explicitly declare the variable type. Results
returned by Tcl are always of type string. As with any language, there is a standard set of
rules for performing operations involving different types. For example, the command

expr $x + Sy

3



UNIX: The Complete Reference

results in Tcl passing an integer with value 44 and a real with value 12.2 to the expr C
procedure. This procedure returns a real of value 56.2, which Tcl converts to a string and
displays on the screen. As an aside, notice that the $ symbol is used, as it is in shell, when
referencing a variable.

Tcl commands can be embedded by using brackets. For example, the command

set a [expr $x + Syl

results in variable a containing the value 56.2. The Tcl interpreter treats all substitutions the
same way. It looks at each word, starting from left to right, and sees if a substitution can be
made. This is the same whether the word is a command name or a variable name. When the
end of the line is reached, it calls the C procedure that corresponds to the command name. If
an expression is in brackets, substitutions are still made but the entire bracketed expression is
passed as a single argument to the procedure, and this procedure calls another procedure to
get the expression evaluated. Although this may sound odd to users not experienced in
using a language like this, the result is that, with a little bit of practice, Tcl becomes intuitive.
Because all commands adhere to the policies just explained, learning new commands is easy.

Tcl Language Features

The major features of the Tcl language are described in the following sections. For more
details consult one of the references listed in the section “How to Find Out More” at the end
of the chapter.

Substitutions

Substitution is used to replace a portion of a line with a value. It is important to understand
how substitution works in Tcl because almost all Tcl programs rely heavily on substitution.
Tcl provides three forms of substitutions. The first form is variable substitution. It is denoted
by a $ symbol; variable substitution causes the value of the variable to be inserted into a
word, as in the earlier example. The second form is command substitution, which causes a
word to be replaced with the result of a command. The command must be enclosed in
brackets. This was also shown in a previous example. Finally, there is quoting, which has
several different forms. Backslash substitution is one form of quoting that allows for
formatting such as newlines or tabs, or to bypass the special meaning of characters such as $
or [. Backslash substitution is denoted by use of the \ character immediately preceding the
character on which it is operating. For example, the command

set a Sale:\nLobster:\ \$12.25\ 1lb.

results in the output

Sale: x
Lobster: $12.25 1b.

These lines are the value stored within variable a. Note that \n causes a line return, \
followed by a single space causes a space to be set within a word, and \ followed by a $
symbol causes the $ symbol to be set as part of the value of the variable instead of causing
a substitution.



The Tel Family of Tools

Backslash substitution is effective for bypassing the meaning of individual special
characters or for applying formatting symbols. Double quotation marks and braces can be
used instead. Double quotation marks disable word separators; everything within a set of
double quotes appears as a single word to the Tcl parser. Braces additionally disable almost all
the special characters in Tcl, such as $, and are particularly useful for constructing expressions
as command arguments. As an example of double quotation marks, the command

set a "Sale:\nLobster: \$12.25 1lb."

is equivalent to the previous example. Note that the \ characters preceding the spaces are
no longer needed. Because brackets are even more powerful, note that the command

set a {Sale:\nLobster: \$12.25 1b.}

results in the variable a being set to the string

Sale:\nLobster: \$12.25 1lb.

which is probably not what was intended. Instead, the equivalent way to use brackets for
the desired effect is shown here:

set a {sale:
Lobster: $12.25 1b.}

Variables
Tcl variables have a name and a value, both of which are character strings. As you have already
seen, the set command is used to assign a value to a name. In addition, Tcl provides an append
command for appending an additional value to an existing variable, an incr command for
incrementing an integer variable, and an unset command for deleting a variable.

Tcl also provides associative arrays, which are lists of elements, each with a name and
a value. For example, the sequence of commands

set budget (1999) 1289.78
set budget (2000) 2361.22
set budget (2001) 3509.59

results in the associative array named budget acquiring three elements named 1999, 2000,
and 2001. These elements take on the values 1289.78, 2361.22, and 3509.59 respectively.
Array elements are referenced using the $ symbol in the same way regular variables are
referenced, for example, $budget(1999).

The Tcl interpreter sets several predefined variables. For instance, argc is a variable
containing the number of command-line arguments your program is called with, argov0 is a
variable containing the command name your program is executed as, and argv is a variable
containing the command-line arguments your program is called with. env is an associative
array containing the environment variables for your program when it is executed. The name
of each element in the array is the name of the environment variable. For example,
$env(HOME) contains the value of the HOME environment variable.

5



UNIX: The Complete Reference

Expressions

Expressions combine values to create a new value through use of one or more operators.
The simplest way to use Tcl expressions is via the expr command. This example first applies
the — operator to the values 7 and 3 to produce 4 and then applies the * operator to 4 and 2
to produce 8:

expr (7-3) * 2

The operators supported in Tcl are the same as for ANSI C (discussed in Chapter 24)
except that some of the operators also allow for string operands. Tcl evaluates expressions
numerically where possible and only uses string operations if the operands do not make
sense as a number. When the operands are of different types, Tcl will automatically convert
them. When one operand is an integer and the other is a real, Tcl will convert the integer to
a real. When one operand is a nonnumeric string and the other a number (integer or real),
Tel will convert the number to a string. The result of an operation is always the same type as
its operands except for logical operators, which return 1 for true and 0 for false. Tcl also
provides a set of mathematical functions such as sin, log, and exp.

Lists
Lists in Tcl are ordered sets of elements where each element can have any string value. A
simple example of a list is an ordered set of string values such as this:

apple banana cherry watermelon

In this case the list has four elements. Tc! provides commands for creating and manipu-
lating lists. We will describe some of the basic commands here.

The lindex Command The lindex command extracts an element from a list according to the
index argument. Note that the first element is at index 0. For example, the command

lindex (apple banana cherry watermelon) 2

returns as output the string "cherry".

The concat and list Commands The concat and list commands are used to combine lists.
concat takes a set of lists as its arguments and returns a single list; list takes the same
arguments but returns a list containing the lists. For example, the command

concat (apple banana) (cherry watermelon)

returns a list that combines the two lists:

(apple banana cherry watermelon)

whereas the command

list (apple banana) (cherry watermelon)

returns a list that contains the two lists: ((apple banana) (cherry watermelon)). The
distinction between these two commands is important; the list produced by concat contains
four elements, whereas the list produced by list contains two elements.



The Tel Family of Tools

The llength Command
The llength command will return the number of elements in a list, which means that the
command

llength {list (apple banana) (cherry watermelon) }

returns the value 2, because this is a list containing two lists. On the other hand, the
command line

llength {concat (apple banana) (cherry watermelon)}

returns the value 4.

The linsert Command

The linsert command modifies an existing list by inserting one or more elements in an
existing list. It takes three arguments: the list to insert within, the position at which to do the
insertion, and the elements to be inserted. For example, the command sequence

set mylist (a b ¢ d)
insert S$mylist 2 x vy z

returns (a b x y z c d), with the elements being inserted before the location indicated by the
index, since the index starts at 0.

The Ireplace, Irange, and lappend Commands The Ireplace command replaces a section of
a list with one or more elements. Its arguments are similar to linsert. For example, the
command sequence

set mylist (a b ¢ d)
lreplace Smylist 2 x vy z

returns (a b x y z), with the existing elements within the list being replaced by the new
elements starting at the location indicated by the index. The lrange and lappend commands
are available for extracting a subset of a list and for appending elements to a list.

The Isearch Command The Isearch command searches a list and returns the position of the
first element that matches a particular pattern. The arguments to this command are the list
to search and the pattern to match. For example, the command sequence

set mylist (a b ¢ d c¢)
lsearch S$mylist c

returns 2, the position of the first element c in the list.

The Isort Command The Isort command sorts a list according to alphabetical or numerical
order. For example, the command sequence

set mylist ( 4 3 2 1)
lsort -integer Smylist

results in the list (1 2 3 4) being returned. You can also provide your own sorting algorithm
via the -command option.

1



UNIX: The Complete Reference

The split and join Commands The split and join commands are used to break apart and
combine lists by taking advantage of regular separators that delimit the elements in a list.
For example, the command sequence

set mylist a:b:c:d
split Smylist :

returns (a b ¢ d), a list of all the elements delimited by :. Similarly, the command sequence

set mylist a b ¢ d
join S$mylist

returns (a:b:c:d), a list of all the elements with the : delimiter inserted in between.

Advanced Features

Now that you have learned some of the basics, consider how some more interesting
examples of Tcl code can be constructed. For example, the command sequence

set mylist (1 2 3 4 )
expr [join Smylist +]

returns the value 10. This example combines the expr and join commands along with the
rules for command substitution to produce the result. First the Tcl parser applies the join
operation to mylist to produce 1+2+3+4. Then the expr operation is applied to 1+2+3+4 to
produce the result 10. The square brackets ensure that the result of the join operation is what
the expr command operates on. Without them the code would not produce the desired result.

Controlling Flow

Tcl provides a means of controlling the flow of execution in a script. Tcl’s control flow is
very similar to that of the C programming language (see Chapter 24) and includes the if,
while, for, foreach, switch, and eval commands.

The if Command The if command evaluates the expression and then processes a block of
code only if the result of the expression is nonzero, as shown here:

if (sa > 1){
set a 1
}

From the point of view of the Tcl parser, the if command has two arguments. The first is the
expression, and the second is the code block to execute if the result of evaluating the expres-
sion is nonzero. The if command can also have one or more elseif clauses and a final else
clause, just as C does.

The while, for, and foreach Commands Loops can be created using the while, for, or foreach
command. The while command takes the same two arguments as the if command: an
expression and a block of code to execute. The while command will evaluate the expression
and execute the block of code if the expression is nonzero. It will then repeat this process
until the expression evaluates to zero. For example, the code



The Tel Family of Tools

set x 0

while {$x < 10}{
incr x 1

# do processing here

}

results in the incr command being executed over and over until the value of x reaches 10.
The for command is similar to while but provides more explicit loop control. For example,
the command

for (set x 0} {$x < 10} {incr x 1}{
# do processing here

}

is equivalent to the while command. The foreach command is an easy way to iterate over
all the elements in a list. It takes three arguments: the name of a variable to place each
element in, the name of the list to iterate over, and the block of code to execute for each
iteration. For example, the command sequence

set x 0

set mylist 1 2 3 4

foreach value $mylist{
incr x $value

}

results in the variable x being incremented to 1, then 3, then 6, and finally 10.

The break and continue Commands Loops can be terminated prematurely via the break and
continue commands. The break command exits the loop and places flow control to the first
command line after the loop. The continue command terminates the current iteration of the
loop and causes the next iteration to begin.

The eval and source Commands
Tcl provides a couple of special commands, eval and source, which are useful shortcuts to
prevent awkward or inefficient code from being written.

The eval Command

The eval command is a general-purpose building block that accepts any number of
arguments, concatenates them (inserting spaces in between), and then executes the result.
This is useful for creating a command as the value of a variable so that it can be stored for
execution later in your program. For example, in the command

set resetx "set x O"

the variable init can be created to store the command set x 0 so that at some later point in
your script you can reset x by using the eval command on the variable resetx:

eval Sresetx

This results in x being set to 0. A more advanced use of eval is to force an additional level
of parsing by the Tcl parser. You can think of this as having a little Tcl script executed
within a bigger Tcl script. A simple example of this type of usage is for passing arguments

9



10

UNIX: The Complete Reference

to another command. Suppose you want to run the exec command to remove all files
ending in .tmp in your current directory. The most obvious approach will not work:

exec rm *.tmp

This is because the exec command does not perform filename expansion. The glob
command is needed to provide filename expansion, so the following example should work:

exec rm [glob *.tmp]

However, the rm command will fail because the result from glob is passed to rm as a
single argument and so rm will think there is only one file whose name is the concatenation
of all files ending in .tmp. The solution is to use eval to force the entire expression to be
divided into multiple words and then passed to eval:

eval exec rm [glob *.tmp]

The eval command can be used in many creative ways, and it is possible to write some
fairly powerful code in a few lines. However, scripts containing eval statements can become
difficult to debug or for someone else to understand, so use eval judiciously.

The source Command The source command reads a file and executes the contents of the file
as a Tcl script. This is a good mechanism for sharing blocks of Tcl code among different
scripts. The return value from source will be the return value from the last line executed
within the file. This line, for example, results in the contents of the file input.tcl being
executed as a Tcl script:

source input.tcl

Procedures
A Tcl procedure is similar in concept to a function in C or a subroutine in perl. It is a way to
write a block of code so that it can be called as a command from elsewhere within a script.

The proc Command The proc command is used to create a procedure in Tcl. The proc
command takes three arguments: the name of the procedure, the list of arguments that are
passed to the procedure, and the block of code that implements the procedure:

proc lreverse { mylist } {
set j [expr [llength S$mylist] - 1]
while ($j >= 0){
lappend newlist [lindex Smylist $7]
incr j -1
}

return Snewlist

The Ireverse Command

The Ireverse procedure takes a list as an argument and creates another list that reverses the
order of the elements from the original list. This new list is returned to the caller of the
procedure.



The Tcl Family of Tools 11

The variables used within a procedure are local variables. The arguments to the
procedure are also treated as local variables; a copy of the variables being passed to the
procedure is made when the procedure is called, and the procedure operates on this copy.
Thus the original variables from the point of view of the caller of the procedure are not
affected. The local variables are destroyed when the procedure exits. Here is an example
that shows how the Ireverse procedure can be called:

set origlist {a b c d}
set revlist (lreverse origlist)

After these lines are executed, revlist contains the returned value from Ireverse, {d c b a}.
origlist is unmodified, and all the variables inside lreverse are destroyed.

Pattern Matching

Tcl has two ways to do pattern matching. The simpler way is “glob” style pattern matching,
which is the method for UNIX filename matching used by the shell. This is implemented
using the command string match followed by two arguments, the pattern to match and the
string to match on. For example, the code

set silly (jibber jabber)

foreach item $silly({
if [string match ji* $item] ({
puts "Sitem begins with jin"
}

}

results in a match on “jibber” and no match on “jabber.”

The regexp Command Tcl also provides more powerful facilities for string manipulation via
pattern matching using regular expressions just as the egrep program does. Regular
expressions are built from basic building blocks called atoms. In Tcl the regexp command
invokes regular expression matching. In its simplest form it takes two arguments: the regular
expression pattern, and an input string. The input string is compared against the regular
expression. If there is a match, 1 is returned; otherwise, 0 is returned. For example, the
command sequence

set s "my string to match"
regexp my S$s

returns 1, whereas the command sequence

set s "my string to match"
regexp [A-Z] $s

returns 0 (because there are no capital letters in s).
The regsub Command The regsub command extends the regexp idea one step further by
allowing substitutions to be made. It takes a third argument, which is the string to

substitute for the string that is matched, and a fourth argument, which is the variable in
which to store the new string. For example, the command

regsub pepper '"peter piper picked a pepper" pickle newline



12

UNIX: The Complete Reference

results in newline containing the string “peter piper picked a pickle”. Because there was a
match, 1 will be returned; otherwise, 0 will be returned and the new value of newline will
not be created.

The string index, string range, and string length Commands The other string manipulation
commands are all based on options of the string command. The string index command will
return the character from a string indicated by the position specified as the index. For
example, the command

string index "talking about my girl" 11

returns u, because the first character is at position 0. The string range command returns the
substring between the start and stop indices indicated. For example, the command

string range "talking about my girl" 14 20
returns “my girl”, as does the command
string range "talking about my girl" 14 end

It is also worth mentioning the string length command, which returns the number of
characters in a string. For example, the command

string length "talking about my girl"
returns 20.

File Access

The normal UNIX file naming syntax is recognized by Tcl. The commands for file I/O are
similar to those for the C language. Here is an example script that illustrates basic file I/O
functionality. Type the following lines into a file named tgrep:

#!/usr/local/bin/Tclsh
if {$argc != 2} {

error "Usage tgrep pattern filename"
}

set £ [open [lindex S$Sargv 1] r]
set pat [lindex Sargv 0]
while {[gets $f line] >= 0} {
if {regexp $pat $line} {
puts $line
}
}

close S$f

This script behaves similarly to the UNIX grep program. You can invoke it from the shell
with two arguments, a regular expression pattern and a filename, and it will print out the
lines in that file that match the regular expression.

Assuming that the correct number of arguments are supplied on the command line, the
tgrep script will open the file named as the second command-line argument. This file will



The Tel Family of Tools

be open in read-only mode because the second parameter of the open command is r (w is
used for write mode). The open command will return a filehandle, which is contained in
variable f. The variable pat is set to contain the first command-line argument, which is the
pattern to match. The gets command is used to read the next line of the file and store it in
the variable line. This is done for each line of the file. gets returns 0 after the last line of the
file is read, and the while loop will exit. Meanwhile, the regexp command is used to
compare the line read from the file with the pattern to match against, and if there is a match,
the puts command is used to place the line in an output file, which, in this case, is stdout
because no filehandle is included as an argument. Finally, note that the file is closed after it
is through being accessed, which is good programming technique.

Processes
The exec command in Tcl can be used to create a subprocess that will cause your script to wait
until the subprocess completes before it continues executing. For example, the command

exec date

results in the exec command executing date as a subprocess. Whatever the subprocess
writes to standard output is collected by exec and returned. In this case, a line is returned
that indicates the date when the subprocess was executed.

Pipes can also be constructed using the open command in conjunction with the puts or
gets command. This will return an identifier that you can use to transfer data to and from
the pipe. puts will write data on the pipe, and gets will read data from the pipe. For
example, the commands

set pipe_id [open { | wc} w]
puts pipe id "eeny meeny miney mo"

result in the string “eeny meeny miney mo” being piped to the wec program. The result of
the wc execution will be written to standard out of the Tcl script.

Tcl/TK Plugins for a Web Browser

If you are a web developer, you should know that a Tcl/ Tk scripting plug-in is available for
your web browser to help you to develop applets (small applications) called Tclets. These
Tclets can be used in many of the ways Java is used, with the added features of being faster
and more easily developed. The Tcl/ Tk plugin, currently version 3 for Tel/Tk 8.x, is
available through a number of web sites, but the best site to get it from is http://www.tcl.tk/.
Many of the original Tcl/Tk developers at Sunscript have moved on to work as developers
for this site, so this site has a lot of useful tools for and information concerning Tcl/ Tk and
Tclet applications development on the web.

Tclets

Tclets (pronounced “ticklets”) are applets (small programs) that are created in Tcl for use
on the web. Although many current web applications are written in Java, Tclets are
becoming more popular for use in dynamic applications, since they run faster and can be
developed much faster than Java scripts. These applications are developed under the
Netscape environment and are a logical growth path from the initial days of Java scripts
running on Sun equipment using Netscape as the browser. Currently there is no equivalent

13



14 UNIX: The Complete Reference

of Tclets in the Microsoft (ActiveX) arena, but Microsoft will assuredly address this lack for
developers who use Microsoft Internet Explorer to enhance ActiveX.

If you wish to view some sample Tclets, you may do so by first loading the Tcl/Tk plug-
in as specified previously, and then running one of the demos at the Scriptics site.

Tk Basics

Tl is most popularly used in conjunction with Tk. Tk is an application extension to Tcl that
enables you to build graphical user interfaces. It is based on the X11 Window System
(discussed in another chapter on this companion web site) but provides a simpler set of
commands for programming a user interface than the native X11 toolkit does. It is quite
valuable to integrate Tk into your repertoire of programming skills. You then have a means for
creating professional-looking graphical user interfaces for the tools and applications you create.
And this is valuable for interacting with users because the UNIX command line, although very
useful in its own right, is limited in terms of the ways it can interface with users.

To run Tk, use the interactive shell wish instead of tclsh. Assuming that the Tcl and Tk
toolkits are installed on your system, and that you are running under an X Windowing
system such as Motif, type wish to invoke the Tk windowing shell. This will cause a small,
empty window to appear on your screen and the wish shell to be ready to accept user
input. For example, if you type

button .b -text "Hello world!" -command exit
pack .b

the window appearance changes to reflect a small button with the words “Hello world!” on
it. If you place the mouse pointer on the “Hello world!” text and click the left button, the
window disappears and wish will exit. The style is similar to Tcl in that command lines are
words separated by spaces, with the first word always the command name (button and
pack, respectively, in this case). The command lines are more complicated, however; the
order of arguments is important in some cases, and many arguments are optional. The
button command expects the name of the new window to be the first argument (b in this
case). This is followed by two pairs of configuration options—the —text option with value
“Hello world!” and the —-command option with value exit. Other configuration options can
be included to deal with issues such as sizing, vertical and horizontal spacing, background
and foreground, bordering, and color. As a general observation, quotes are used to construct
a word that has spaces within it. In this case “Hello world!” is a single word from the point
of view of the Tk (and Tcl) interpreter.

Widgets
The basic building block for a Tk graphical user interface is a widget. Several different types
of widgets are part of the language, such as buttons, frames, labels, listboxes, menus, and
scrollbars, to name a few. Each type of widget is called a class, and all class commands are of
the same structure, as shown in the button command—the first word is the name of the
class command, the second word is the name of the widget that is to be created, and the
remaining words are pairs of configuration options.

The basic idea behind building a Tk application is to define the widgets that enable the
user to specify the input to and get the results from your application. This means that widgets



The Tel Family of Tools

that are used to collect information from the user (menus, text input fields, buttons) are tied
to an action, which could be to execute another script or tool or to execute a subroutine
within your own script. And the result of this action would typically cause some output to
be displayed to the user. In Tk parlance, these actions are referred to as event handlers.

Widgets are created as a hierarchy; for example, a frame may contain two smaller
frames—one containing a scrollbar and a text message and the other containing a bitmap
image and a label. The name of the widget reflects this hierarchy with a dot used to separate
names. Thus, if frame a contains frame b, which contains label ¢, the name of label ¢ would
be a.b.c. To be aware of this hierarchy is very important to the programmer because it
directly maps to the display the user will see.

Event Loops

Tk scripts are almost always event driven. An event is recorded by X11 when something
“interesting” occurs, such as when a mouse button is pressed or released, a key is pressed or
released on the keyboard, or a pointer is moved into or out of a window (usually via a
mouse movement). Besides user-driven events, other types of events can occur, such as the
expiration of a timer or file-related events. In Tk when an event arrives, it is processed by
executing the action that has been bound to the event.

This basic idea of waiting for events and then taking action is known as the event loop.
While the action binding is being executed, other events are not considered, so there is no
danger of causing a new action binding to interfere with one that is already executing. To
promote good responsiveness, the action binding is usually designed to be quick or to be
interruptible by passing control back to the event loop.

Geometry Manager

Before widgets can appear on your screen, their relationship to other widgets must be
defined. Tk contains a geometry manager to control the relative sizes and locations of
widgets. The pack command shown previously is the most common geometry manager; it
deals with the policies for laying out rows and columns of widgets so that they do not
overlap. The many options for controlling the geometry manager enable you to build a
graphical user interface that has the “look and feel” you require.

Bindings

The bind command associates an action to take with an event. Events consist of user inputs
such as keystrokes and mouse clicks as well as window changes such as resizing. The action
to take is referred to as a handler or as an event handler. Tk enables you to create a handler for
any X event in any window. Here is an example bind command:

bind .entry crru-p {.entry delete insert }

The first argument is the pathname to the window where the binding applies (if this is a
widget class rather than a pathname, the binding applies to all widgets of that class). The
next argument is a sequence of one or more X events. In this case there is a single event—
press the D key while pressing the cTrL key. The third argument is the set of actions or
handler for the event, which consists of any Tcl script. In this case the .entry widget will be
modified to have the character just after the insertion cursor be deleted. This will be
invoked by the script each and every time the cTrRL-D input is supplied.

15



16

UNIX: The Complete Reference

Graphical Shell History Tool
This example shows a simple graphical interface that enables a user to save and reinvoke
shell commands. Assume that a file named redo contains the following script:

#!/usr/local/bin/wish -f
set id 0
entry .entry -width 30 -relief sunken -textvariable cmd
pack .entry -padx 1lm -pady 1m
bind .entry <Returns>

set id [expr $id + 1]

if {$id > 5 } {

destroy .blexpr $id - 5]
}

button .b$id -command "exec <@stdin >@stdout $cmd" -text S$Scmd
pack .b$id -fill X

.bsid invoke

.entry delete 0 end

}

The entry command creates a text entry line called .entry (dot entry) that is 30 characters
wide and has a sunken appearance. The user input in this line is captured in the cmd
variable. The pack command is used to tell the pack geometry manager how to display the
.entry object. A return by the user will activate the binding shown in brackets.

Each return causes a button to be created. Five buttons are created: b1, b2, b3, b4, and
b5. These are displayed in a column with the most recently created button displayed at the
bottom via the pack command. Each button contains the cmd value as its text value via the
—text option. Once id exceeds 5, the oldest button (b[expr $id-5]) is destroyed and the newly
created button is inserted at the bottom of the column. The result is a list of the five most
recent commands being displayed, along with a text entry area to enter a new command. If
the user enters a new command, a button will be created for it and displayed. The invoke
command will cause that button to be selected, resulting in the execution of the command
in the window where the Tk script is being run. If the user selects a button instead, it will
cause the command displayed in the button to be executed. The last line removes the
command from the entry widget so that a new entry can be input by the user.

The Browser Tool

Finally, here is an example of a browser tool. If the following script is contained in a file
named browse and made executable, it will return a widget listing of the files in the directory
in which you run it. If you double-click on a file, this script will open the file for editing
using your default editor (if your EDITOR environment variable is set) or the xedit editor:

#Creates a listbox and scrollbar widget

scrollbar .scroll -command ".list yview"

pack .scroll -side right -£fill y

listbox .list -yscroll ".scroll set" -relief raised -geometry 20x20 \
-setgrid yes

pack .list -side left -fill both -expand yes

wm minsize . 1 1

#£i11 the listbox with the directory listing
foreach i [exec 1s] {



The Tcl Family of Tools 17

.list insert end S$I

}

#icreate bindings

bind .list <Double-Button-1> {
set i1 [selection get]
edit SI

}

bind .list <Control-g> {destroy .}
focus .list

#edit procedure opens an editor on a given file unless the file is a
#directory in which case it will invoke another instance of this script
proc edit {dir file} {
global env
if [file isdirectory $file] ({
exec browse $file &
}

else {
if [file isfile $file] {
if [info exists env{EDITOR}] {

exec Senv (EDITOR) S$file &

}

else {
exec xedit sfile &
}

else {
puts “$file is not a directory or regular file.”
}

}
Going Further

This section has given a very brief introduction to Tk. Tk has many features that we have
not covered. To learn more about Tk, locate and read some of the references provided at the
end of the chapter, in the section “How to Find Out More.” By doing so, you should quickly
become adept at using Tk.

Expect
Expect is a language for automatically controlling interactive programs. An interactive
program is one that prompts the user for information, waits for the user’s response, and then
takes some action based on the input. Common examples are ftp, rlogin, passwd, and fsck.
The shell itself is an interactive program. Expect is intended to mimic the user input so that
you do not have to sit there and interact with the program. It can save you a lot of time if
you find yourself entering the same command over and over into the programs you run.
System administrators find themselves in this situation all the time, but regular users also
will see opportunities in which Expect can help them.



18

UNIX: The Complete Reference

Expect is written as a Tcl application. This means that it adds some additional commands
on top of the full suite of commands that are already available in Tcl. It is named after the
main command that has been added, the Expect command. Expect was written by Don Libes
of the National Institute of Standards and Technology and is fully documented in his book,
Exploring Expect.

Examples of Expect

The best way to illustrate how Expect is used is to show a number of examples of where it
can be used and then to explain the new commands used in each example. For the first
example, consider the passwd program. This is used when you want to change your
password. The program will prompt you for your current password and then ask you to
type in your new password twice. Assuming a legal response was input at each step, the
interaction looks like this:

Spasswd

Current password:

New password:

Retype new password:

Spassword changed for user <user names

This could be automated by an Expect script that takes the old and new passwords as
command-line arguments. Assume that the script is called Expectpwd and is run from the
shell command line as Expectpwd <oldpassword> <newpassword>. The Expectpwd script
would be written this way:

#/usr/local/bin/Expect

spawn passwd

set oldpass [lindex Sargv 0]
set newpass [lindex Sargvl]
expect "Current password:"
send "Soldpass\r"

expect "New password:"

send "Snewpass\r"

expect "Retype new password:"
send "Snewpass\r"

The spawn command causes the passwd program to be executed. The set commands
should be familiar to you from the Tcl section: The variables oldpass and newpass are created
with the values of the first command-line argument ($argv0) and the second command-line
argument ($argul), which are the old password and the new password, respectively. $arguv is
a special array automatically created by the Expect interpreter that contains the command-
line arguments. The expect command waits for the passwd program to output the line
“Current password:”. The Expect interpreter stops and waits until this pattern is matched
before continuing. The send command sends the line in quotes to the passwd program. The
\r is used to indicate a carriage return, which is a necessary part of the user response for the
input to be acted upon.

Although the added value of this particular program is marginal, it leads to a couple of
important observations. The first is that a single shell command line is substituted for the
user’s having to wait to interactively provide the input. The second is that a system



The Tcl Family of Tools 19

administrator could benefit greatly by taking this approach if she had to set up a few
hundred accounts for new users. (Note that when the passwd program is run by a system
administrator, it does not ask for the old password and it takes the user name as a
command-line argument.)

Automating Anonymous FTP

You have already seen the basics of how Expect works: by expecting a set of patterns to
match and sending a set of responses to those patterns. This is great for totally automating a
task, but sometimes you may need to return control back to the user. For example, the
anonymous FTP login process can be automated and then control returned back to the user
for inputting the command to retrieve a file:

#!/usr/local/bin/Expect

spawn ftp S$argv

set timeout 10

expect {

timeout {puts "timed out"; exit}
"connection refused" exit
"unknown host" exit

n Name n

}

send "anonymous\r"

expect "Password:"

send "maja@arch4.att.com\r"
interact

After spawning ftp to the site included as the argument to the command line when
running this script, it makes an FTP connection to that site; you then supply the anonymous
login and provide your e-mail as the password (this is done by convention since the
anonymous FTP login does not require a real password). Then control is returned to the
user via the interact command. At this point the user is free to interact with ftp as if he or
she had manually supplied all the previous steps.

Also shown here is the timeout command, which in this case is set for ten seconds.
Notice that the first expect command contains a series of pattern/action couplets. If no
response is received after ten seconds, the timeout pattern is matched and the script writes
“timed out” to standard output and exits. The “connection refused” and “unknown host”
responses result in the script exiting (remember the response from ftp is displayed to the
user). And if Name is matched, flow control continues to the rest of the program. The final
line of an expect command is allowed to have no action associated with the pattern, and so
the conventional style is for the command to check for errors and do the action associated
with the command in the previous patterns. The final pattern should be for the successful
case so that flow control can continue.

Special Variables in Expect

Expect automatically provides a few special variables. The expect_out array contains the
results of the previous expect command. expect_out is an associative array that contains
some very useful elements. The element expect_out(0,string) contains the characters that
were last matched. The element expect_out(buffer) contains all the matched characters plus



2

UNIX: The Complete Reference

all the characters that came earlier but did not match. When regular expressions contain
parentheses, then the elements expect_out(1,string), expect_out(2,string), and so on up to
expect_out(9,string) will contain the string that matches each parenthesized subpattern from
left to right. For example, suppose the string “abracadabra” is processed by the following
line of Expect code:

expect -re "b(.*)c"

In this case, expect_out(0,string) is set to “brac”, expect(1,string) is set to “ra”, and expect_
out(buffer) is set to “abrac”. The —re option to the expect command tells it to use regular
expression matching.

xterm Example

As a final example, let’s look at an Expect script that spawns an xterm process and is able to
send and receive input to and from it. This example is useful when you want to bring up
another window on the user’s terminal to report or gather information instead of
interrupting the window where the user is running the script. It also can be used to report
information to a remote terminal.

You cannot simply type “spawn xterm” because xterm does not read its input from
a terminal interface or standard input. Instead, xterm reads input from a network socket.
You can tell xterm which program to run at the time you start it, but this program will then
run inside of the xterm that starts and you will no longer be able to control it. One way to
be able to run an xterm and control it is by spawning it to interact with a terminal interface
that you create.

An easy way to do this is to spawn the xterm from an existing Expect script. This
requires creating a pseudo-terminal interface (known as a pty interface) to the xterm process.
The pty can be thought of as sitting between the Expect script and the xterm and handling
the communications between them. To do this, the pty is organized to have a master
interface and a slave interface. The Expect script will have the master interface, and the
xterm will have the slave interface. Here is the first half of the example:

spawn -pty
stty raw -echo < $spawn_out (slave,name)
regexp ".*(.) (.)" $spawn_out (slave,name) junk a b

set xterm $spawn_id
set $xterm pid (exec xterm -SS$Sa$b$spawn out (slave, fd) &)
close -slave

The option to run an xterm under the control of another process requires xterm to be
run with the —Sabn option, where a and b are the suffix of the pty name and # is the pty file
descriptor. Fortunately, these are attainable from the associative array $spawn_out, which is
automatically created by Expect.

First a pty is instantiated without a new process being created, using the —pty option to
spawn. (A pty is always created by the spawn command and normally associated to a
process.) The pty has two interfaces—a master and a slave. The element $spawn_
out(slave,name) contains the name of the slave interface. Because xterm requires its interface



The Tcl Family of Tools N

to a pty to be in raw mode and echoing disabled, this is done in the second line. The third
line picks off the last two characters (the suffix) of the pty name, which are the last two
characters of $spawn_out(slave,name), and the fourth line runs xterm as a background
process with the —Sabn flag. The element $spawn_out(slave,fd) contains the file descriptor for
the slave interface to the pty. Finally, the last line closes the slave file descriptor because the
slave side of the pty interface is not needed by Expect.

At this point an xterm is now running with a pty associated to it that the Expect script
has an interface to. The code to communicate to and receive input from the xterm is
straightforward:

spawn S$env (SHELL)

interact -u $xterm "X" {
send -1 $xterm "Press return to go away: "
set timeout -1
Expect -i $xterm "\r" {
send -i $xterm "Thanks!\r\n"
exec kill $xterm pid
exit

}

First, a shell is spawned so that it can be the “Expect process” that communicates with
the xterm process. The interact command with the —u option causes the interaction to occur
between two processes rather than a process and a user. The first process is the one
contained in $spawn_id (which represents the shell), and the second process is the ID in the
xterm variable that was set in the first half of the example with the value that represents the
pty interface to xterm. The “X” argument to the interact command is used to indicate the
input to look for to break the interact mode. If the user of the xterm enters “X” she will then
see the string “Press return to go away: ” and upon pressing RETURN, she will see the string
“Thanks!” and the window will disappear. The i options on the expect and send
commands are used to indicate that the place to be looking is the process identified in xterm
rather than the default standard I/O. Note that it is sufficient to kill only the xterm process
because the exiting of the Expect script will cause graceful cleanup of the pty and processes.

Summary

This chapter has provided a brief overview of Tcl, Tk, and Expect. With the information
presented here you should be able to get started using these tools to build your own scripts.
You should also have the kinds of applications that these tools can be used for. Note that
excellent documentation exists for all three tools discussed in this chapter. And there is a
thriving and growing community of users, a subset of whom also continue to contribute
additional extensions and applications, all of which are freely available on the Internet. As
with perl, the Tcl family of tools is excellent for developing applications on the web, and
they are quite often used together to take advantage of the best features of both when
developing a web application.



2

UNIX: The Complete Reference

How to Find Out More

Here are some useful books and resources on Tcl, Tk, Expect, and Perl used together with
Tk (Perl is the topic of Chapter 22 in the book):

Ousterhout, John K. Tcl and the Tk Toolkit. Reading, MA: Addison-Wesley, 1994.
John Ousterhout wrote the definitive book on Tcl and Tk, but others are helpful as well.
Libes, Don. Exploring Expect. Sebastopol, CA: O'Reilly and Associates, Inc., 1995.

In addition to helping you understand Expect, the Libes book is extremely useful for
learning about Tcl and Tk.

McMillan, Michael. PERL from the Ground Up. Berkeley, CA: McGraw-Hill/Osborne,
1998. This book discusses interfaces between Perl and Tk.

Walsh, Nancy. Learning Perl/Tk. Sebastopol, CA: O'Reilly and Associates, 1999.

Welch, B. Practical Programming in Icl and Tk, 4th edition. Upper Saddle River, NJ:
Prentice Hall, 2003.

You may find it useful to read the newsgroup comp.lang.tcl for more information about
Tcl, Tk, Expect, and other extensions of Tcl. In particular, the FAQ in this newsgroup
contains a lot of helpful information.

The official web site for Tcl is at http://www.tcl.tk/. If you are interested in obtaining the
latest version of Tcl, this is the site that gives you all the information about the licensing
agreement for tools such as Tcl/Pro and provides the Tck/Tk core (currently 8.4) free of
charge. It also provides a wide range of Tcl/ Tk applications donated by the Tcl application
developer community. If you are interested in obtaining Tcl/ Tk, you can also get it from the
web site at http://www.activestate.com/Products/ActiveTcl/.

The web in general is a good resource for finding out more information about Tcl, Tk,
Expect, and other related tools. For example, you might want to look at the Tcl/Tk core
development home page, which is at http://tcl.sourceforge.net/. From these pages you can find
documentation on the tools discussed in this chapter, archive sites for software, and general
information about Tcl, Tk, and other tools. You can also look at http://www.amazon.com/ for
an online list of books that cover these topics.



