CHAPTER

Menus and Toolbars

624 Oracle9i JDeveloper Handbook

Man is a tool-using animal....
Without tools he is nothing, with tools he is all.
—Thomas Carlyle (1751-1881), Sartor Resartus

very user of client/server applications is familiar with the traditional design elements
of menus and toolbars. Both provide easy-to-use and well-understood user interfaces
for many application functions. Menus enable users to execute the standard tasks in
an application. Toolbars enable users to execute the most commonly used tasks in
the menu. Providing these two elements to your users gives them the tools to perform
their work most efficiently. Menus and toolbars in Java applications and applets work exactly like
their counterparts in the client/server world.

This chapter explains some general considerations for designing menus and toolbars for Java
applications and applets (which this book refers to as “Java client applications”). The best way to
describe how to create menus and toolbars in JDeveloper is to step through examples. The
hands-on practices at the end of the chapter supply such examples.

NOTE

While the design considerations in this chapter apply to any style of
development, the techniques describe the use of menu and toolbar
components from the Swing and AWT libraries. Designing menus and
toolbars for a JSP light-client application has similar design concerns,
but the controls that you use are different in appearance and in
development. This chapter emphasizes Swing components, which
most developers prefer because of their superior functionality.

Design Considerations

An integral part of any user-interface design is determining how the user will perform the actions
required to complete a task. For example, when designing an online transaction processing
application, you have to decide how the user will add, search, modify, delete, and save data.
The first decision you must make is whether you will use menus and toolbars at all. If you do
not use them, you have to decide how to supply the functionality that they normally provide.
The deployment method that you select for an application will, to a large extent, help you with
this decision.

In a client/server application, menus and toolbars are natural features that users easily
understand and expect to see. Since applets on the Web emulate the controls that users are
accustomed to, menus and toolbars have a fairly standard appearance. If the application is
deployed through servlets, JavaServer Pages (JSP) applications, or other HTML interfaces, menus
and toolbars may appear, but can take on many different formats.

The role of menus in an HTML environment is played by textual links, graphical links, or
navigation bars. The role of toolbars is played by buttons or icons on the page. Pulldown menus
sometimes appear in HTML applications through the use of JavaScript (because HTML does not
support the standard menu look-and-feel). The functions that menus and toolbars deliver are
integrated into design elements of the website, and that design is often unique to each site.

Once you have decided that the application requires menus and toolbars, you need to design
the layout and organization and determine which functions you want to provide. There are some
general factors to consider and guidelines to follow when creating this design.

Chapter 19: Menus and Toolbars

TIP

Refer to Sun Microsystems’ website for more design information about
menus and toolbars. You can connect to http.//java.sun.com/products/
jlt/ed1/dg/higm.htm or search for “design menus and toolbars” in the
java.sun.com website.

What Do You Put on a Menu?

When structuring a menu system, it is important to emulate standard menu items that users are
accustomed to in most Windows applications. This will lessen the learning curve that the user
interface may require and speed up user acceptance of your application. Menu design should
take into consideration the organization of elements that your users expect. For example, if
your menu structure contains File, Edit, View, Window, and Help menus, users will quickly
understand where to look for a particular function because these menus are commonly used

in Windows applications. While most Windows client/server applications interact with files,
your applications will more commonly interact with a database, so you may have to stretch the
meaning of the item names in some cases. A standard menu structure follows:

File Menu This menu usually contains Open, New, Save, Close, and Exit items among others.
You can provide those same items in data-aware Java applications, even though the concept of file
interaction does not usually apply. An Open item could select a table or application to browse; a
Close item could clear current data from the form; and Save could commit the changed data.

Edit Menu Menu items may add or remove records or otherwise manipulate data. For
example, you can include an item to copy an existing record or to fill the current record with
default values. Another common item to include on the Edit menu is one for Options that allows
users to modify personal preferences such as colors, fonts, and backgrounds. Options may also
include how default values are filled in and what is shown when the user opens the
application—for example, a find window or an automatic query of all records.

View Menu Items on this menu may navigate to a particular section or record. The View
menu can also contain items for Find, Sort, and Filter to modify how a set of records is displayed.
You can also allow users to display or hide a toolbar using a check mark menu item.

Application-Specific Menus These menus, which should be placed to the left of the Window
menu, will provide functionality that is specific to the application. It is best to keep the number of
other menus to a minimum so that the user is not overwhelmed with choices. As a rule of thumb,
a maximum of ten pulldowns (main menu headings), each with a maximum of 15 selections, will
give users up to 150 choices. This should be plenty for a standard application. If the items are
logically arranged, users will be able to find a function easily without having to browse the
menus frequently.

Selections in other menus might include functions such as navigating to other applications,
stepping the user through a difficult task, or using wizards to enter data.

Window Menu The items on this menu can be used to arrange the various open windows
and allow navigation between them.

625

626 Oracle9i JDeveloper Handbook

Help Menu ltems perform the expected calls to the help system or Help About dialog.

Other Menu Features

Menus offer other design features. You can take advantage of all of these in JDeveloper, but some
may require extra coding.

Nested Menus

Menus can contain nested submenus, as shown in an example of the JDeveloper IDE menu in
Figure 19-1. In other words, when you select a menu item from a pulldown, another side menu
opens for the actual selection. In this example, when you select Refactor from the Tools menu, a
submenu containing three choices opens.

Design Suggestion Although you can create menus to virtually any level of depth, a good
rule of thumb is to limit yourself to three levels, as in Figure 19-1. Using more than three levels
requires some extra dexterity from your user and can lead to frustration if the user cannot easily
select a menu item.

Window Help

Configure Paletta...
Manage Libraries...

Refactar Rename Class...
] Show Dependencies

Extract Method..™ Ctrl+Alt+M

crverride Methods. .
Implement Interface...
Weh Object Manager
[T TCP Packet Monitor
Convert HThL...

Esxternal Toaols..
>
>

78 Preferences...

FIGURE 19-1. Multi-level menu

Chapter 19: Menus and Toolbars

Popup Menus

You can define popup menus that appear when the user clicks the right mouse button. Popup
menus are not attached to the top of the window, but normally appear at the mouse cursor location
when the secondary mouse button (right button for right-handed mouse users) is clicked on an
object. They are also called context menus or right-click menus because they appear based on the
context or location of the mouse cursor. Popup menus are usually customized for the object that
was clicked and allow quick access to functions that apply only to that object. For example, right
clicking a text item could display a menu for Cut, Copy, and Paste to manipulate the text in the
item. Right clicking a panel in a data form might display a menu that allows users

to add or remove records and save or undo changes. Users find right-click (more Save
properly called “alternate-button click” to accommodate left mouse users) menus Lnda

a fast way to get to a particular menu item. They require less mouse movement

than using a pulldown menu to access the required functions. An example of a %

popup menu is shown to the right.

Design Suggestion It takes some training to make users aware of and accustomed to the
functionality on popup menus. However, if your application requires repetitive actions to access
or input data, popup menus may help. Examine the possible ways that your application will be
used when determining what items to include on popup menus, and customize them for the most
commonly used menu items that a user would require when working with a particular object.
Popup menu items are usually items that also appear on the main application menu.

Design the popup menu as simply as possible. For example, nested submenus within a popup
menu make the popup menu difficult to use. Popup menus often contain fewer items than a
normal pulldown menu, and you may want to set a limit of six or eight items (plus separators).

NOTE
As mentioned in the Introduction, this book calls context or popup
menus “right-click menus.”

Check Mark and Radio Group Items

Menu items can appear as normal items or with check marks or radio buttons. A check mark
menu item represents a single state of a toggle, such as displaying or hiding a toolbar. For
example, you might have a View menu that contains a check mark menu item (Toolbar) that
displays the component toolbar. If the menu item is checked, the toolbar is displayed. If users
select the item when it is checked, the check mark vanishes and the toolbar is hidden.

Radio group menu items offer more than one option and display the selected option with a
round bullet icon. If you create a group of items, only one of the group items will be “checked”
at once. The menu item functionality will take care of the visual display, but you need to write
code to handle what happens when the user makes a selection.

For example, you might have a main menu item called Sort that is a submenu. When a user
selects the item, a nested menu appears with a radio group of items for the columns that will be
sorted (such as Name, Hire Date, Salary, and so on). When the user selects one of this group, the
radio button next to the item will appear filled in, and the code you write would re-sort the
display based upon that column.

627

628 Oracle9i JDeveloper Handbook

Design Suggestion Other than the View menu suggestions just mentioned, check and radio
group menu items are not frequently used. It is more common to provide the functionality that
they offer using an options dialog.

Mnemonics and Accelerators

Mnemonics are quick access keys that help users select a menu or menu item without using the
mouse. Pulldown menus are typically activated using the ALT key combined with the first letter
in the menu text. For example, to activate the File pulldown, the user would press ALT-F. In this
example, “F” would be underlined to indicate to the user that this was the key to press with the
ALT key. The user accesses a menu item within the pulldown using the underscored letter. For

example, the Exit item in the File menu would be activated when the user pressed

== the X key. The letter used as the mnemonic must appear in the menu item’s text
Save property. An example of the underlined letters that indicate mnemonics is shown
Exit to the left.

An accelerator key is a shortcut to the functionality that is offered in the menu.
The user can press this key combination to run the same code that the menu item activates.
This saves the user from having to interact with the menu. Mnemonics and accelerators are
similar, but accelerators do not display the menu selection and are usually a

cave CilsS CTRL key combination instead of the mnemonic’s ALT key combination. The
—=— "~ accelerator key combination appears next to the menu item, as shown here

Exit for the Save function.

NOTE

The Swing class J[MenuBar uses a property called “accelerator” to
supply the functionality of an accelerator. If you use the AWT class
MenuBar, the property name is “shortcut.”

Design Suggestion When you make the decision about which mnemonics and accelerators
to include, a good rule of thumb is that you should provide mnemonics for every menu selection
so that a user without a mouse can successfully navigate within your application. It is important
to respect the standards supported by existing applications. For example, you should provide the
commonly known accelerators such as CTRL-S for Save. Examine common Windows programs to
get a feeling for the common accelerators. In addition, you should avoid reassigning commonly
used accelerators such as CTRL-X, CTRL-C, and CTRL-V that usually represent the functions Cut,
Copy, and Paste, respectively.

It is important to think about accelerators and mnemonics because they allow users an
alternative to using the mouse to access application functions. This is particularly critical for users
who, because of a visual or other disability, are unable to use a mouse.

Disabling and Enabling Items

Many modern applications disable menu options that are not applicable to a certain mode. For
example, if you have not made any changes to data on a form, the Save option is not required
and therefore should be disabled. When a change is made to the data, the item would be
enabled.

Chapter 19: Menus and Toolbars

Design Suggestion Well-designed applications enable and disable menu items at the
appropriate time, and this feature is the ultimate in user friendliness. However, disabling options
requires a bit of code, and you have to weigh the benéefits of this friendliness against the extra
time and effort involved in coding and debugging. Depending upon your target audience’s
tolerance and the frequency with which a function may be accessed, issuing a dialog to indicate
that a function is not available in a certain mode will serve the purpose and not cause undue user
frustration.

Menu Item Icons
You can associate a .gif file with a menu or menu item. You can display the menu text with the
graphic.

Design Suggestion Although this technique allows you to associate a visual clue with the
text, it is unclear whether menu icons assist the user in more quickly identifying a menu item.
The extra space that the graphic requires is probably not worth the benefit in most situations.

Separators
A separator is a thin horizontal line that is not user-selectable and contains no functionality.

Design Suggestion Arrange the menu so that the items are grouped by similar functionality,
and add a separator between groups. For example, an Edit menu may contain, among others,
functions for Cut, Copy, and Paste. Those functions are logically similar and may be grouped
using separators before the first and after the last item. The menu objects for this example would
be Separator, Cut, Copy, Paste, Separator. Another use for separators is to visually group a set of
radio group menu items.

Tooltips
Menu items can have tooltip text associated with them. This text pops up when the user rests the
mouse over the item, as the following shows:

Fila Edit Help
h’-ﬁ

|Fi|e systermn and database operations

Design Suggestion Menu tooltips are useful only if menus or menu items are hard to
understand. Since you should strive for intuitive wording in your applications, you should not
need this feature for most menu items.

NOTE

You will not see accelerators, mnemonics, or icons in the Menu
Editor. If you define them in the properties or code, they will appear
only at runtime.

629

630 Oracledi JDeveloper Handbook

What Do You Put on the Toolbar?

Think of the toolbar as a subset of the menu. All functions on the toolbar should also be available
in the menu. Therefore, it is best to design the menu first and repeat frequently used menu
selections in the toolbar. Examples of commonly used items for a transaction processing system
would be Save and Undo. Users need to interact with data frequently, and saving and undoing
changes are often-performed tasks. You may have to validate your designation of commonly used
functions with a user trial of your application.

Toolbars are usually iconic in nature. In other words, the user selects a toolbar button by
identifying an iconic picture located in a panel. This saves space and clutter on the screen over
the alternative of identifying the buttons with text labels. Toolbar buttons are also a standard
size as opposed to text buttons that are usually sized to their labels. Although there is a bit of a
learning curve for users to understand what the pictures represent, it is faster for users to find a
picture in the toolbar than a word once that learning curve is overcome.

Other Toolbar Features

Many features of menus are also available for toolbars. However, the design considerations are
different for toolbars and menus, as follows:

B Icons While you may not choose to use icons on menu items, you would usually use
them on toolbar buttons.

B Mnemonics and accelerators If you follow the guideline that toolbar items are derived
from menu items, the menu items will fulfill the need that mnemonics and accelerators
serve. Therefore, you do not need mnemonics and accelerators for toolbars.

B Tooltips While you do not use tooltips for menu items, you normally supply tooltips
for an iconic toolbar button so that the user can get a hint about the function that the
button performs.

B Enabling and disabling items You might want to go through the same process as you
do with menus to determine how you will handle enabling and disabling items. Since
toolbar buttons duplicate functionality on the menu, you can extend the code you write
to disable and enable a menu item to include the toolbar button with the same
functionality.

You also need to consider multiple toolbars and toolbar arrangements when designing
toolbars.

Multiple Toolbars

After you decide what to put in the toolbar, you need to determine how many toolbars to supply.

Sometimes, there are more items to put in a toolbar than there is horizontal space in the window.

Also, there may be logical, task-oriented groupings of buttons that you might want to represent.
The solution for these issues is to supply more than one toolbar. Each user may work with

your application in a different way, and you can account for this by allowing the user to select

which toolbar is displayed using an options dialog.

Chapter 19: Menus and Toolbars

Design Suggestion Use multiple toolbars if you have many functions that need to be
represented or if you think some users might want to have control over the groups of buttons that
are displayed. If the latter is the case, you have to write code to enable users to specify which
toolbars are displayed.

Toolbar Arrangements

Although toolbars normally appear on the top of the window just under the menu, you can also

build toolbars in a vertical orientation to leave more vertical space for user-interface objects.
You can also define the toolbar as part of a separate window or as a panel that the user can

“undock” from the main window so that it floats outside the main window. This gives the user

the option to shrink the main window but still have all elements visible without scrolling. The

toolbar buttons will be easily available in this arrangement.

Design Suggestion Horizontal toolbars are a standard and expected interface object. Vertical
toolbars are a personal preference that you might want to let the user determine. Floating toolbars
are also something that you can supply to the user. Some styles of applications such as drawing
programs undock the toolbars to provide more drawing space, but database applications usually
appear with the toolbar initially docked to the main window.

Summary of User Access Methods

When you design your menu and toolbar, you have to consider the functions that the users need
to access. You also need to plan the method that will provide each of these in the application.
The following are the main methods available to application designers:

B Toolbar button

B Menu item (main menu)
B Accelerator key
|

Popup menu item

For example, the Cut function is usually available in the Edit menu as well as in the popup
menu for items that support data editing. In addition, the design could provide for a toolbar
button that offers users the choice of clicking the button for the Cut function. As in most
applications, the accelerator CTRL-X would be mapped to the same function.

There is an additional method that you can offer to particular users—the command line.
While this is not the normal method for applets, there may be some functions that you would
allow the user to perform from a command-line prompt (such as opening or converting a file).

Menus and Toolbars in JDeveloper

JDeveloper supports the creation of Java client applications that include all of the menu and
toolbar functionality described earlier. Therefore, you have wide scope when designing the
features that you want to include. Some features are easier to implement because JDeveloper
writes the code for you. For example, to attach an icon to a button, you just fill in the icon
property of the button object with the .gif file name, and the setIcon () code will be created.
Setting the mnemonic and accelerator for a menu item can be accomplished using properties, as

631

632 Oracle9i JDeveloper Handbook

the hands-on practices at the end of this chapter demonstrate. Runtime behavior such as
disabling and enabling menu items and buttons requires writing custom code. For example, to
enable the Save menu item, you would add the following code to the application:

saveMenultem.setEnabled (false) ;

You can automatically generate default menus and toolbars using the wizards. For example,
the New Frame dialog that is called from the New Application dialog contains checkboxes for a
menu and toolbar, as Figure 19-2 shows. When you check those checkboxes, the New Frame
dialog creates a default menu that contains a File menu with an Exit item. The toolbar contains
buttons for file open, file close, and help. Both structures contain no code (other than a generic
call to exit the application) and are only outlines of what you would use for a real application.
Therefore, you need to add code and buttons and modify the contents after the dialog is finished.
Other wizards, such as the JClient Form Wizard, also automatically generate a full menu and
toolbar. (The JClient Form Wizard is available in the New gallery’s Client Tier\Swing/JClient for
BC4]J category.) In this case, the code for the buttons and menu items is also generated and
completely functional.

There are other JDeveloper features for menu objects and toolbar objects that are worth
exploring. The hands-on practices at the end of this chapter give you some of the steps to
complete when creating menus and toolbars.

Wihat are the details of your new class?

Marme: |DepanmentsFrame

FPackage: |menutoo|bar ~ Browse..
Extends: | javaxswing JFrame | Browse..

Optional Attributes

Tile: |

[henu Bar

[Status Bar

[Ahout Box

FIGURE 19-2. Specifying a menu and toolbar in the New Frame dialog

Chapter 19: Menus and Toolbars

Menu Objects

The object for a menu system that appears on the top of a window is called a menu bar
(implemented using a Swing component such as JMenuBar). This is the root object that you drag
into an application from the JDeveloper Component Palette. A menu bar is a container that holds
two kinds of objects: menus and menu items (implemented by components such as JMenu and
JMenultem, respectively). Menus correspond to the headings that you click for a pulldown or
submenu (nested menu or menu within a menu). Menu items are the items in the pulldown
menu. In the case of multi-level menu systems, submenus look similar to menu items, but include
a right arrow to indicate that they display other menu items. For example, in Figure 19-1, the
Tools menu contains a selection for Refactor, which is actually a menu because it contains
selections such as Rename Class and Move Classes. Therefore, you can say that menus may
contain other menus and menu items.

The Menu Editor
The easiest way to lay out a menu is with the Menu Editor feature of the Ul Editor. You access
this window using the following steps:

I. In the Navigator, select Ul Editor from the right-click menu on the frame Java file.
Additional Information: This displays the Ul Editor with GUI components (if any) in
the Java file.

2. If a menu exists, expand the Menu node in the Structure window, and click the menu
node to switch the display to the Menu Editor as shown in Figure 19-3.

@PC:'l.JDeuQi'ljdev‘lnwwurk'I.TuuIhar'lMenuTquharJA'l.src'lmenu

=
e v T
Add
Remove
Unda

FIGURE 19-3. Menu Editor

633

634 Oracle9i JDeveloper Handbook

3. If you want to add a menu, click the Menu node in the Structure window. Select the
JMenuBar component from the Swing Containers page of the Component Palette, and
drop this component onto the Menu node in the Structure window.

Additional Information: You can switch back to the Ul Editor by clicking any
component in the Ul node of the Structure window.

NOTE

The JDeveloper Menu Editor contains toolbar buttons such as Insert
Menultem, Insert Separator, and Insert Submenu that you can use to
manipulate menus and menu items. You may find that the toolbar
buttons speed up your work in the Menu Editor.

The right-click menu for Menu Editor objects contains functions that you use to create the
menu structure. After creating the menu structure, you write code that will be activated when
a menu item is selected. The right-click menu options allow you to create or delete an item or
separator and create a submenu (nested menu). The right-click menu also has selections to
convert a normal menu item to a checkable menu item and to disable or enable a menu item.
The latter just toggles the enabled property from “True” to “False.” You can also toggle this
property at runtime using the setEnabled () method.

You fill in the menu item label in the editor and press ENTER to register the label. This will
move the cursor to a blank item where you can type the next text label. The code and properties
areas will update as you make changes to the design area. To edit the text for an existing item,
double click the item in the Menu Editor.

TIP

You can drag and drop menu items, separators, and submenus within
the Menu Editor to rearrange their order. Dropping on top of an item
will arrange the dragged item above that item. Selecting a right-click
menu option to add an item or separator will add the item or
separator above the selected item.

Toolbar Objects

Toolbars are made up of a set of buttons inside a container called a toolbar. The toolbar has
special properties that allow users to detach the container from the main window. You can use
the floatable property of the toolbar to specify whether users can detach the toolbar. Since the
toolbar is a container, you can manipulate the group of buttons by manipulating the toolbar. For
example, if you want to hide the toolbar buttons, you write code to hide the toolbar. All buttons
inside the toolbar will also be hidden.

You lay out the toolbar using the Ul Editor. The sequence consists of dropping a toolbar
container object in the application and adding buttons inside the toolbar.

Buttons require event code to execute the desired action. You can attach icons to buttons so
that they have a picture on top. You can also fill in the text property with a text string that will

Chapter 19: Menus and Toolbars

appear on top of the button. (AWT objects use the label property for the button text.) Normally,
toolbar buttons use icons as decoration, but not text labels. Therefore, you need to remove the
value of the text property (or the setText () call in the source code) so that there will be no
text label.

A hands-on practice in this chapter steps through the process of creating a toolbar with
buttons.

TIP

As mentioned, you can reorder objects on the Menu Editor by dragging
and dropping. You can reorder buttons in a toolbar in the same way,
using drag and drop. You can also reorder buttons and menu items by
cutting them from the Structure window (CTRL-X) and pasting them
(CTRL-V) on top of another object node in the Structure window. The
pasted object will be placed on the top or on the bottom of the list of
objects beneath the target object.

NOTE

The order of objects in the Structure window represents the order in
which the objects will be rendered in the application. This ordering
scheme is referred to in Java as the “z-order” and is described in a
sidebar in Chapter 20 called “A Word About Z-Order.”

Using a Navigation Bar

A quick way to create a toolbar that has record and database manipulation buttons is to use a
navigation bar. The JClient controls Component Palette page contains a JUNavigationBar class
that you attach to a client data model. This navigation bar provides Next, Previous, First, Last,
Add, Delete, Save, Undo, Find, and Query functions for the data model. You do not have to
write any customized code to make the navigation bar buttons work. A hands-on practice in this
chapter contains examples of how to create a navigation bar.

Hands-on Practice: Prepare a
Sample Application

The practices that follow require a sample data form Java application as a starting point. You can
download this starting application from the authors” websites and skip this practice. Alternatively,
you can use the following steps to create this application.

You will use the JClient Form Wizard to create a database interface form for the Departments
table.

I. In the Navigator, find an existing workspace that contains an HR BC4J project (such
as the one created in Chapter 1). Alternatively, you can use the Project Containing New

635

636 Oracledi JDeveloper Handbook

13.
14.

Business Components item in the New gallery to create a default BC4J project for the
DEPARTMENTS table. After you have a BC4J project, select New Empty Project from the
right-click menu on that workspace node. The New Project dialog will start.

Specify the name of the directory as “MenuToolbarJA.” Name the project
“MenuToolbarJA.” Click OK to create the project.

Click Save All.

Select New from the right-click menu on the new project node. Double click Form from
the Client Tier\Swing/JClient for BC4J category. The JClient Form Wizard will start. Click
Next if the Welcome page appears to display the Form Types page.

Click Next to accept the defaults on this page (single table with a form), and click Next
to accept the defaults on the Form Layout page (a single column with labels to the left).
The Data Model page will appear.

Click the New button to define a data model. The BC4) Client Data Model Definition
Wizard will start. Click Next if the Welcome page appears to display the Definition page.

Select the HR project and application module from the pulldowns if they are not already
selected and click Next to display the Definition Name page.

Click Next to display the Finish page. Click Finish to create the data model and return to
the JClient Form Wizard.

Click Next to display the Panel View page. Select DepartmentsView1 and click Next to
display the Attribute Selection page.

. The default selections on this page are usable, so click Next to display the File Names

page. Enter the following names:
Package name as “menutoolbar”
Form name as “DepartmentsForm”
Master panel name as “DepartmentsPanel”
Generate a menu bar unchecked

. Click Next and Finish to exit the wizard and create the files.

12.

Open DepartmentsForm in the Code Editor and search for the following line of code:
this.setSize (new Dimension (800, 600);

Change “800, 600” to “400, 300" so that the window will appear smaller when it is run.

Click Save All. Click Run to run the DepartmentsForm file. The application will look
something like the following:

Chapter 19: Menus and Toolbars 637

& O[]

Departmentld 10
DepartmentName Pdministration

tanagerid 200
Lacationld 1700
|rnw1 |Mndiﬂed:false Editing : Departmentsiiswl FE

15. Close the window.

What Just Happened? You used the wizard to create a data form Java application that
accesses the Departments table. The wizard also helped you create a client data model that
defined the application model for the BC4J project in the same workspace. This data form is fully
functional for all data manipulation. However, the form has no menu.

To run this form, you run DepartmentsForm, which is a subclass of JFrame, a Java window.
DepartmentsForm calls DepartmentsPanel, which contains the Ul elements such as labels and
text fields. The next practice will add a menu to the window class (DepartmentsForm.java).

Hands-on Practice: Build a Menu

This practice builds a menu system for the sample application created in the previous practice.
Adding a menu to an existing application consists of the following main phases:
I. Lay out the menu elements
Il. Set the menu element properties
lll. Write the menu item code

As mentioned earlier, there is a preparation step where you design the structure that your
menu will use. The menu you will build in this practice uses the structure shown in Figure 19-4.

638 Oracledi JDeveloper Handbook

Edit
Save Add

Remove

Exit

Search *» Fing

Lnda Execute

FIGURE 19-4. Sample menu structure

NOTE

This practice is written as a demonstration of the menu editing
facilities in JDeveloper. It assumes that you are creating a menu
system from scratch. Since the items on this menu are the same as
those created by the JClient Form Wizard, you could also just
rearrange the generated items.

I. Lay Out the Menu Elements

The first phase defines the structure of the menu and adds menu elements to the JFrame (window)
class, DepartmentsForm.java. At this point, you do not need to worry about all of the properties
or names of the elements. Use the following steps to lay out a menu bar:

I. Open the Ul Editor for DepartmentsForm.java if it is not already open. Click the Menu
node in the Structure window. The Ul Editor will change to a Menu Editor blank
window.

2. In the Swing Containers Component Palette page, click J]MenuBar, and click the Menu
node in the Structure window to add the menu to the application. The Structure window
will display the new menu bar as shown here:

-l Ul

= E Menu
iMenuBar?

@ l=j Other

3. Change the name property to “mainMenuBar” in the Property Inspector.

Chapter 19: Menus and Toolbars

Additional Information: At this point, you will see nothing in the Ul Editor other than a
dotted rectangle that you will use to enter a menu item.

NOTE

You can change between the Ul Editor and Menu Editor by clicking
the appropriate node in the Structure window (Ul and Menu,
respectively).

4. To add the first menu item, click the dotted rectangle in the upper-left corner of the
Menu Editor and enter “File.” Press ENTER after typing the text. The text is written into
the text property of the menu element. The Menu Editor window will look like this:

iﬁ.ﬁC:'I.JDeuQi'deeu'unywurk'IMenuTquharWS'lMenuTuuIharJn.'lsrc'lmenuluulhal_" 71X

Additional Information: When you add a menu, the Menu Editor opens a new menu
to the right and a new item below. Each time you add a menu item, the Menu Editor
opens a blank item below it. New menu elements are shown with a dotted or selected
box. Clicking a new element allows you to type text.

CAUTION

If new (dotted rectangle) items do not appear when you enter the
“File” label, try the operation using the Windows look-and-feel (Tools
| Preferences, Environment page, set the “Look and Feel” field to
“Windows,” click OK, and reload JDeveloper).

639

640 Oracle9i JDeveloper Handbook

5. Click the box to the right of the File menu, and type “Edit” for the text. Press ENTER. This
adds another menu (top-level) element. Add another menu element for “Help.” Your
menu will look like this:

& ChDevdijdevimyworkMenuToolbarWWSiMenuToolbar JAisrcimenutoolbal & 71 X
TEE HH

File Edit Help

||

6. Click the File menu and click the box under it. Type the label as “Save” and press ENTER.
Click the box under Save and type “Exit” and press ENTER.

7. Select “Exit” and click Insert Separator in the Menu Editor toolbar. This adds a separator
above the Exit item.

8. Add items under the Edit and Help menus to match the structure shown in Figure 19-4.
Additional Information: For the submenu on Search, select
“Search” and click Insert Submenu in the Menu Editor toolbar.
This converts Search to a submenu and opens an edit box to Add
the right. Enter “Find” for the menu item and “Execute” for Remave
another menu item in this submenu. The resulting Edit menu is
shown to the right.

Edit Help

Search » Fing

Undo Execute

9. Click Save All.

NOTE
You can also select menu editing actions such as Insert Submenu
from the right-click menu.

What Just Happened? You just added a menu bar component to the application and used
the Menu Editor to define the menus and menu items that will be displayed. Since the menu bar
attaches to the window title bar, you do not have to worry about the layout in the frame.

Chapter 19: Menus and Toolbars

NOTE
If your design included check menu items, you would use the Make
Checkable toolbar button to convert the item to a check menu item.

Il. Set the Menu Element Properties

Now that the menu structure is laid out, you need to modify the properties. The primary property
that you need to change is the name property. Other properties to modify are mnemonic and

accelerator. Changing properties requires visiting the Property Inspector for each item. Use the
following steps to accomplish this:

I. Click the JMenul (top) icon under mainMenuBar in the Structure window. Change the
name property to “fileMenu” in the Property Inspector and press ENTER.
2. Change the name of the first menu item under fileMenu to “saveMenultem.”

3. Repeat steps 1 and 2 for all menus and items using the same pattern. You do not need to
rename the separators. The Structure window should appear as follows:

2 r«_’f] Menu
Z-[2] mainhtenuBar
== fileMenu "File"

4. Add mnemonics for each menu item by assigning the mnemonic property using the
following table:

Menu or Menu Item mnemonic Property
File F
Save S

Exit X

641

642 Oracle9i JDeveloper Handbook

Menu or Menu Item mnemonic Property
Edit
Add
Remove
Search
Find
Execute
Undo
Help
About

> I C X m »w R»n >»> m

Additional Information: A mnemonic is a letter or character that users can press to
activate the menu item. The rule is that you need to select a mnemonic letter that is part
of the string in the text property. Letters may be repeated as above if the items that they
represent are in different menus.

For example, you can set the File menu to pull down when the user presses ALT-F by
assigning the mnemonic property as “F.” This assignment will place an underscore on
the matching letter during runtime as the following shows:

Edit
Save
Exit

4. Click the Save menu item. Assign the accelerator property in the Property Inspector by
selecting “KeyStroke” from the pulldown. This opens a dialog where you select the modifier
and key for the accelerator. In this case, select “CTRL_MASK” (the CTRL key) as the modifier
and “VK_S” (the “s” key) as the key. Click OK to close the dialog. Click Save All.

Additional Information: Recall that accelerators are shortcut keys that allow the user
to access the function of a menu item without activating the menu. In this case, the key
combination of CTRL-S will activate the function for the Save menu item. Although you
will not see the shortcut key indicated in the editor, when you run the file the shortcut
key appears next to the menu item during runtime, as the following shows:

Save Ctrl+S5

What Just Happened? You changed the names of the menus and menu items to comply with
a naming convention (mentioned in Chapter 5) that requires a suffix to denote the type of each
object. You also added mnemonics and an accelerator to assist users in accessing the menus and
menu item functions.

Chapter 19: Menus and Toolbars

1. Write the Menu Item Code

You do not need to write code to display menu elements because this function is performed by
the control. However, you do have to write the event code that each menu item executes when it
is selected.

Attaching code to a component is a three-step process:

l.
2.

Write a listener for the object that will wait for an event to occur on the object.

Identify the type of event the user will activate (such as mouse click, keypress, and
focus-gained), and write a method for that event inside the listener definition. A generic
event for menu items and button clicks is the actionPerformed event; this event occurs
when the default action for the item occurs (for example, a button click or menu item
selection). The event method calls another method defined in the class file.

. Write the method that is called by the event method.

For example, the Save menu item event will use a listener defined by the following code:

saveMenulItem.addActionListener (new ActionListener ()
{
public void actionPerformed (ActionEvent e) {
saveMenultem_actionPerformed (e) ;

}
)

This code creates a listener for the Save menu item that calls the

saveMenulItem actionPerformed () method when the actionPerformed event
occurs; in this case, the action performed event corresponds to the user selecting the
Save menu item. The saveMenuItem actionPerformed () method contains the
code that executes the commit action on the navigation bar as follows:

private void saveMenultem_ actionPerformed(ActionEvent e)
{
// calls an action on the navigation bar
hiddenNavBar.doAction (JUNavigationBar .BUTTON_COMMIT) ;

Event Code

This section adds code to handle the events that occur when a menu item is selected. JDeveloper
assists in creating the listener, its event method, and the method that the event method calls, as
the following steps demonstrate:

Invoke the Ul Editor to display the menu for the DepartmentsForm.java file if it is not
already displayed.

643

644 Oracle9i JDeveloper Handbook

TIP

At any point, if the Ul Editor and Structure window are out of sync,
click in the Ul Editor, and then click in the Structure window. When
you click the Ul Editor again, the Structure window should refresh.

2. Click the icon for saveMenultem in the Structure window. Click the Events tab in the

Inspector.

Additional Information: In the Events tab are event names (in the properties column)
and the associated called method names (in the property values column). The method
names do not appear until you define the event in the Property Inspector. You can
specify the method name that you want the event to call in your code by filling out the
value column for an event. The default name is a concatenation of the object name and
the event name. For example, the saveMenultem event for actionPerformed defaults to
“saveMenultem_actionPerformed.”

. Click the actionPerformed event and click the “...” button to display the

actionPerformed dialog.

Leave the default name and click OK. The Code Editor will open to a method stub for
saveMenuitem_actionPerformed () that was just added.

Additional Information: JDeveloper also creates code to define the listener. Take a
moment to search from the top of the file for “saveMenultem_actionPerformed.” The first
occurrence of this string is in a section of code that sets properties for the Save item.

NOTE

If you change the name you assign to an existing event in the Property
Inspector, the code for the method and listener will be modified
automatically.

5.

In the saveMenuItem_actionPerformed () method stub at the bottom of the file,
add a line between the { } and enter the following code (all on one line):

hiddenNavBar.doAction (JUNavigationBar .BUTTON_COMMIT) ;

Additional Information: The JClient Form Wizard added a navigation bar object into
the frame file (DepartmentsForm.java). This navigation bar (hiddenNavBar) is bound
to the DepartmentsView view object and provides data manipulation functions such as
INSERT, DELETE, COMMIT, and ROLLBACK. You can take advantage of these functions
by calling a method, doAction (), that performs the same action as a specific button
on the navigation bar (in this case the commit button). Calling pre-built data aware code
is much easier than writing code from scratch code.

Return to the Menu Editor by clicking the DepartmentsForm.java Ul Editor tab in the
toolbar area.

Repeat steps 2—6 for the other menu items using the actionPerformed method code
listed here:

Chapter 19: Menus and Toolbars 645

Item Method Code

exitMenultem _popupTransactionDialog () ;
System.exit (0) ;

addMenultem hiddenNavBar.doAction (
JUNavigationBar.BUTTON_INSERT) ;

removeMenultem hiddenNavBar .doAction (
JUNavigationBar .BUTTON_DELETE) ;

findMenultem hiddenNavBar.doAction (
JUNavigationBar .BUTTON_FIND) ;

executeMenultem hiddenNavBar.doAction (
JUNavigationBar .BUTTON_EXECUTE) ;

undoMenultem hiddenNavBar.doAction (
JUNavigationBar .BUTTON_ROLLBACK) ;

aboutMenultem JOptionPane.showMessageDialog (this,
"Department browse and edit window",
"Department Browse",
JOptionPane.INFORMATION_MESSAGE) ;

TIP

You can bypass the event dialog by entering the event method name
in the Property Inspector’s event field instead of clicking the “...”
button.

Additional Information: The About menu item calls JOptionPane to display a modal
dialog. The Exit item calls the transaction dialog created by the JClient Form Wizard that asks
the user if uncommitted changes should be saved. If there are no uncommitted changes, the
dialog does not appear. The other menu items call button actions on the navigation bar.

8. Click Rebuild and Save All in the toolbar.

9. Run the DepartmentsForm file and test all menu items.

TIP

In addition to the Help About dialog, you might want to build an
entire help system for your application. JDeveloper includes support
for creating your own help files. Details about the Oracle Help for
Java feature are contained in the help system Contents node
“Developing Help With Oracle Help for Java.”

What Just Happened? You wrote event-handler code for each menu item in the layout. Most
of the items call code that emulates a button click on a hidden navigation bar.

646 Oracle9i JDeveloper Handbook

The menu bar appears at the top of the frame in the Ul Editor as shown here:
u B

File Edit Help
[< ¢ bl &= = G 7 R &

Departmentld
Departmenttame
Managerld

Locationid

| modified: | [

If you are interested in adding code that enables and disables menu items, generate an
application using the JClient Form Wizard and specify that the wizard create a menu. The code
in the _updateButtonStates () and menuItemsUpdate () methods that are generated will
give you an idea about how to implement enabling and disabling menu options.

Hands-on Practice: Build a Popup Menu

The method for creating a popup menu (shown in Figure 19-5) is similar to the method for
creating a regular menu. It uses the sample application from the preceding practice as a starting
point. As before, you can also use the application available in the sample files on the authors’
websites.

Although completing the previous practice is not a requirement, this practice abbreviates
many steps that were explained in that practice. If you need further explanation for a particular
step in this practice, refer to the preceding practice. There are two main phases in creating a
popup menu:

I. Lay out the elements
Il. Write the menu code
Bl Display the popup menu

B Handle an event for each menu item

Chapter 19: Menus and Toolbars 647

[[_[O[x]
File Edit Help

Departmentld 10
Departmenttame Pdministration
Save 200

Undo 1700

Remowe I!

|r|:|w1 |M0diﬂed:fa|se |E|:Iiting : Depattmentsiiew! - Depantmentld FE

FIGURE 19-5. Popup menu

I. Lay Out the Elements

The first phase uses the Ul Editor to place the objects on the frame. Be sure that the workspace
for the previous practice or the sample application created in the “Hands-on Practice: Prepare a
Sample Application” section is open.

I. Open the Ul Editor for DepartmentsForm.java if it is not already open.

2. Drop a JPopupMenu component from the Swing Containers page of the Component
Palette onto the Menu node of the Structure window. The Structure window will display
the following:

= E Menu
=2 mainmMenuBar

jPopupienul “jPopupkMenul”

3. Rename the popup menu to “mainPopupMenu” using the name property in the Property
Inspector. Change the label property to “mainPopupMenu.”

648 Oracle9i JDeveloper Handbook

4. Add four items to the popup menu using the same techniques you used in the previous
practice, and change the name properties as in the following table:

Item name

Save savePopupltem
Undo undoPopupltem
Add addPopupltem
Remove removePopupltem

5. Select the Add item and add a separator using the Insert Separator toolbar button.

Additional Information: Remember that separators and menu items will be added
above the currently selected item. You can drag and drop objects to rearrange them in
the Menu Editor.

TIP

When adding items to a menu, pressing ENTER after entering the name
will add an item below and move focus to the new item. All you need
to do is start typing the new text at that point.

6. Click Save All.

What Just Happened? You added the popup menu to the application frame. It appears in the
Menu node of the Structure window but, unlike menu bars, will not be displayed until you write
code to perform that action. In this phase, you also used the Menu Editor to lay out the menu
items in a single menu. Unlike a menu bar, a popup menu does not have top level menus that
display a pulldown with items. The remaining task is to write some code.

1. Write the Menu Code

You need to write event-handling code for displaying the popup and for performing a function
when a menu item is selected. As with the main menu, JDeveloper helps you create the code for
both purposes.

Display the Popup Menu

While a pulldown menu is usually displayed at the top of the window, a popup menu usually
appears when the user clicks the right mouse button. (You can display a popup menu on a button
click or other event as well.) Therefore, in this example, you need an event handler to display the
popup menu on a mouse click. This handler consists of a listener on a panel in the application
that calls a custom method. The following steps create this code:

I. Open the Ul Editor for the DepartmentsForm.java file if it is not already open.

Chapter 19: Menus and Toolbars

Expand the Ul node in the Structure window and the “this” node under it. Click the first
panel in the list (for example, topPanel).

Click the Events tab in the Property Inspector and click the “...” button on the
mouseReleased event to display the mouseReleased dialog.

Notice that the event name is “topPanel_mouseReleased.” This name is fine for this
example, so click OK. The Code Editor will open, and a blank method stub will appear
for the name you just entered.

Add a blank line between the curly brackets and enter the following in the blank line:

if (e.isPopupTrigger()) {
mainPopupMenu.show(this, e.getX(), e.getY());
}

Additional Information: This code shows the popup object inside the main frame
object (“this”). You can programmatically attach the popup menu to other objects in the
same way. The code also shows the popup menu at the mouse cursor’s location (x and y
positions) when the right mouse button was clicked.

JDeveloper also adds a listener, topPanel .addMouseListener (new
MouseAdapter (), that calls this new method. You do not need to modify the
listener code.

Click Save All. You may want to run the DepartmentsForm file to check the popup menu
display. Right-clicking anywhere in the main window will display the popup menu. The
menu items will not yet be functional because you have not written the code.

Handle an Event for Each Menu Item

The code to handle events for each popup menu item works the same way as it does with a
pulldown menu. The code you create for a popup menu item consists of a new listener that calls
a wizard-generated method used by the main menu. This section uses the same methods created
for the menu bar in the preceding practice. Most of those methods call functionality on the
hidden navigation bar generated by the JClient Form Wizard. If you want to use functionality that
is not on the navigation bar, you can write your own code instead of calling existing methods.

In the Ul Editor for DepartmentsForm.java, click savePopupltem in the Structure window.
In the Events tab of the Property Inspector, enter “saveMenultem_actionPerformed” for the
actionPerformed event and press ENTER.

Additional Information: The focus will shift to the Code Editor and navigate to the
existing method. If you did not complete the preceding practice, the method will be
blank. If this is the case, return to the previous practice and fill in the code listed for the
saveMenultem. Notice that you did not need to display or interact with the event dialog
because you typed an event name in the Property Inspector. The ENTER key completes

649

650 Oracledi JDeveloper Handbook

the entry process and causes the Code Editor to be displayed. JDeveloper also creates a
listener for the popup menu item to call the event handler method.

2. Repeat step 1 for each item in the following list:

Item Event Method

undoPopupltem undoMenultem_actionPerformed
addPopupltem addMenultem_actionPerformed
removePopupltem removeMenultem_actionPerformed

3. Click Save All.

4. Compile the project and run it. Try all functions using the popup menu.

What Just Happened? You wrote the code for the main event handler that pops up the menu
when the right mouse button is clicked. You also wrote code to execute the appropriate function
from the navigation bar as in the previous practice. If you have new items that do not use existing
code, the steps are the same except that you have to write the code into the code stub that the
Property Inspector creates.

Hands-on Practice: Build a Toolbar

A toolbar is usually created as an extension of a menu, and it contains the most commonly used
menu items. This practice demonstrates how to develop a toolbar that calls some of the same
methods called by the menu. Although the toolbar only contains three buttons, you can use the
same techniques to add more buttons. This practice will show how you can build a toolbar from
scratch should you find that the navigation bar does not meet your needs. For example, you may
want to add buttons of your own or to replace the navigation bar’s native query-by-example find
utility with one of your own.

This practice uses the sample data form application that is built in the earlier “Hands-on
Practice: Prepare a Sample Application” section. You may also use the application that resulted
from either of the preceding practices in this chapter, but it is not a requirement that you
complete those practices.

This practice uses phases that are similar to those in the menu practice as follows:

I. Lay out the toolbar elements
B Add the toolbar
B Import the image files
B Create image icon objects
B Add the buttons
1. Set the button properties
lIl. Write the button code

Chapter 19: Menus and Toolbars

At the end of this practice, you will have created a toolbar that looks like the one shown here
under the menu:

& O[]
Fila Edit Help

Add a record

Departmentld 10
DepartmentName Pdministration
tanagerid 200
Lacationld 1700

|rnw1 |Mndiﬂed:false|Edi1ing : Departmentsyiew - Departmentld FE

I. Lay Out the Toolbar Elements

As with the menu, the toolbar will be contained in the form file built from JFrame (the window).
In this phase, you will drop a toolbar onto a panel that is assigned a BorderLayout manager. This
layout allows you to fix the toolbar to the top of the parent container. (Chapter 20 describes
layout managers in detail.)

Add the Toolbar

The first step is to add the toolbar container and buttons to the frame.

I. Open the Ul Editor for the DepartmentsForm.java file if it is not already open.

2. Expand the Ul node in the Structure window and the “this” node under it. The Structure
window will look something like the following:

ol vl
-2 this (GridLayout)
£5] aridLayout
-2 topPanel (BorderLayout)
L&) borderLayout
®-2] dataPanel
®- 2] statusBar

3. Drop a JToolbar component from the Swing Containers page of the Component Palette
on top of the panel (in this example, topPanel) under the “this” node in the Structure
window.

651

652 Oracle9i JDeveloper Handbook

4. Change the following properties for the toolbar:
name to “mainToolBar”
constraints to “North”

Additional Information: Although you will see the object in the Structure window, it
will not be prominent in the editor. The toolbar will grow when you drop buttons into
it later.

5. Be sure that the constraints property of dataPanel (under topPanel in the Structure
window) is set to “Center” and the statusBar constraints property is set to “South.”
Change these if needed.

Import the Image Files

You have to load the icon files that you will be using for the toolbar images into the project. This
practice uses .gif files already available in the JDeveloper directories but you can use the same
techniques to import your own image files, if needed.

I. Click the project node and select File | Import.

2. Select Existing Sources and click OK to display the Import Existing Sources Wizard.
Click Next if the Welcome page appears.

3. Click Add and navigate to the JDEV_HOME\BC4J\redist\ bc4j\webapp\images
directory.

Additional Information: If the specified directory does not exist, open the images
directory under the webapp.war directory (actually an archive file that looks like a
directory in the JDeveloper file dialog) in the JDEV_HOME\BC4J\redist directory.

NOTE

If the files or directories mentioned do not exist in your installation,
search for similar files in the JDeveloper directories using Windows
Explorer.

4. Select the files addnew.gif, deleterec.gif, and help.gif (using CTRL click to group select
them).

5. Click Open to add the files to the Refine Files to Be Added pane.

6. Check the checkbox Copy Files to the Project Directory and click Browse. Navigate to
the menutoolbar package directory under src and click Select. The directory,
JDEV_HOME\jdev\mywork\MenuToolbarWS\MenuToolbarJA\src\menutoolbar, will
appear in the text field.

7. Click Next and Finish. The files will be copied to the menutoolbar directory and will be
displayed in the Navigator as shown here:

Chapter 19: Menus and Toolbars

o MenuToolbardajpr
Ed addnew.gif
Ed deleterec.gif
E—l DepartmentsFonm java
FS» DepartmentsPanel java
Ed help.gif
= mMenuToolhardA cpx

Additional Information: When the project is built, the .gif files will be copied to the
classes\menutoolbar directory so that they will be available to the compiled Java files at
runtime.

NOTE

The icon files will be packaged with your other code files for
distribution, and they will be easier to find if they are contained in
the same directory. In addition, if the files are in the project directory,
the code that the Property Inspector creates when you set the icon file
properties will not include the path, which will make the code more
portable.

8. Select one of the graphics files in the Navigator and check that the file name displayed
in the JDeveloper IDE status bar includes the src\menutoolbar directory.

9. Click Save All.

Create Image Icon Objects

You will use the Swing JButton class to create buttons in this form. The JButton class contains an
icon property that allows you to create an iconic button by defining an image file as the icon.
The setIcon () method for a button object requires the parameter of an image icon, an object
that is linked to an image file. Therefore, you need to programmatically create image icon objects
for the graphics files to make the icons available to the button properties. This section adds the
appropriate code to create the image icon objects.

I. Open the Code Editor for the DepartmentsForm.java file and find the following line that
defines the class:

public class DepartmentsForm extends JFrame {

2. There are a number of object declarations under this line. Add the following
declarations directly under the class declaration line (after the opening curly bracket):

// button icons

private ImageIcon imageAdd = new ImageIcon (
DepartmentsForm.class.getResource ("addnew.gif"));

private ImageIcon imageDelete = new ImageIcon (
DepartmentsForm.class.getResource ("deleterec.gif"));

private ImagelIcon imageHelp = new ImageIcon (
DepartmentsForm.class.getResource ("help.gif"));

653

654 Oracle9i JDeveloper Handbook

Additional Information: This code creates image icon objects that can be assigned to
the icon properties of the buttons.

Add the Buttons

You are now ready to add the buttons.

I. Return to the Ul Editor window by clicking the appropriate file name in the Document
Bar. Expand the Ul node until you see mainToolbar. Shift click the JButton component in
the Swing page of the Component Palette. The button will pin (appear outlined) so that
you can draw more than one button without reselecting the component.

2. Click the mainToolBar node in the Structure window. A button will be added as shown
in this excerpt from the Ul Editor:

File Edit Help

n |
jButton1

A |

[« & [[

3. Click the mainToolBar node twice more to create two more buttons.

4. Click the Pointer (arrow) icon in the Component Palette to unpin the button tool.

What Just Happened? You added a toolbar component to the layout and placed buttons in
it. You also prepared the project for the assignment of icon images by adding image files to the
project and creating image icon objects in the code.

Il. Set the Button Properties

You now need to set the button properties to refine the definitions.

I. Select the buttons as a group by clicking the top button in the Structure window and
CTRL clicking the other button.

2. When the buttons are selected, apply the following properties’ values to the group. Click
ENTER after setting each property.
maximumSize to “25,25"
minimumSize to “25,25”
preferredSize to “25,25”
text to blank (no value)

3. Click the top button in the list in the Structure window to ungroup the buttons. Change
the following properties:
name to “addButton”
icon to “imageAdd”
toolTipText to “Add a record”

Chapter 19: Menus and Toolbars

NOTE
The button image may not show correctly in the Ul Editor. This will
be corrected when you rebuild or run the project.

4. Repeat step 3 to set the properties for the second button as follows:
name to “deleteButton”
icon to “imageDelete”
toolTipText to “Delete this record”

5. Repeat step 3 to set the properties for the third button as follows:
name to “helpButton”
icon to “imageHelp”
toolTipText to “Help about”

CAUTION

If you have a problem assigning the icon property, double check the
location of the image files and the image icon object code as
described in the earlier sections.

Additional Information: You can use a number of different properties to assign
various icons to a button for different purposes. The icon, pressedicon, disabledlcon,
disabledSelectedlcon, rolloverlcon, and rolloverSelectedlcon properties define which
icon appears on the button in different situations. For example, if you define a different
icon for the rolloverlcon property, the icon will change if the user holds the mouse
cursor over the button. For brevity, this practice only assigns an icon file to the icon
property.

6. Click the JSeparator icon in the Swing page of the Component Palette, and drop it between
the second and third buttons in the Ul Editor. The right-hand button will move to the right.
The separator serves the same purpose in the toolbar as it does in the menu— to create
logical groupings of functions.

7. Click the separator and set the following properties:
maximumSize to “10,25"
orientation to “VERTICAL”

8. Click Rebuild and Save All. The image files will be copied into the classes\menutoolbar
directory and the Ul Editor will now display the correct icons as shown in this excerpt
from the Ul Editor window:

File Edit Help
= x 2

I rd Fd |

655

656 Oracledi JDeveloper Handbook

9. Click Save All and Run. The form will run and look something like the following. (The
buttons you added will not yet be functional.)

[[_ O]]
File Edit Help

U T R SR A

Departmentld 10
Departmentiame (rdministration

mManagerld 200
Locationld 1700
lraw 1 [Modified:false Editing : Departmentsyigw sl

10. Notice that there are now two toolbars. The navigation bar in the DepartmentsPanel.java
file and the toolbar you just created. Close the running form file. Open
DepartmentsPanel in the Code Editor and find the code that adds the navBar object to
the panel (add (navBar, BorderLayout .NORTH) ;). Comment this line of code so
that it appears as follows:

// add(navBar, BorderLayout.NORTH) ;

Il. Run the form file to confirm that the navigation bar is not displayed.

What Just Happened? This phase set the button properties for size and icon. You used the
object grouping feature to apply common property values to a group of objects. You also used
the button pinning feature to drop multiple copies of the same component. In addition, you
added a separator to define a logical grouping of buttons.

The sidebar “Moving Objects Around” provides some techniques for repositioning objects.

Moving Objects Around

At this point, it is a good idea to take a few minutes to practice moving buttons around. The
techniques you try here on toolbar buttons can be used with any visual object. Start this
practice with the Ul Editor. You can drag and drop buttons or the separator within the
toolbar to reorder them. You can also drag them outside the toolbar, and they will
reposition themselves in the Structure window nodes. Try this out, but be sure you restore
the layout.

pkoletzke
Moving Objects Around
At this point, it is a good idea to take a few minutes to practice moving buttons around. The
techniques you try here on toolbar buttons can be used with any visual object. Start this
practice with the UI Editor. You can drag and drop buttons or the separator within the
toolbar to reorder them. You can also drag them outside the toolbar, and they will
reposition themselves in the Structure window nodes. Try this out, but be sure you restore
the layout.

Chapter 19: Menus and Toolbars

Another method for reordering objects is to cut and paste them in the Structure window.
Whenever you paste an object on another object such as a pane, the pasted object will take
a position either on the top or on the bottom of other objects inside that pane. Try cutting
the delete button by selecting it in the Structure window and pressing CTRL-X. Paste it on top
of the toolbar node by clicking that node and pressing CTRL-C. Try this on other buttons, but
be sure to restore the layout when you are done.

I1l. Write the Button Code

The last step is to add the code to handle the button events. You use the same steps here as in the
menu practices. The code calls the same methods as the menu items call.

I. Open the DepartmentsForm.java file in the Ul Editor if it is not already open.
Select the addButton object. In the Property Inspector, click the Events tab and enter
“addMenultem_actionPerformed” in the actionPerformed event on the Events tab.

2. Press ENTER, and the focus will shift to the existing code in the Code Editor.

Additional Information: If you did not complete the earlier menu practice, this method
will have no code. Fill out the method body with the code contained in the menu
practice. JDeveloper also creates the listener code for the toolbar button that calls this
method.

3. Repeat steps 1 and 2 for the deleteButton and use the event name
“removeMenultem_actionPerformed”.

4. Repeat steps 1 and 2 for the helpButton and use the event name
“aboutMenultem_actionPerformed”.

5. Click Save All. Run the application.

6. Click the Help About button to test the code. Hold the mouse cursor above each button
to see the tool tips. Try the add and remove buttons. The sidebar “Vertical and Floating
Toolbars” contains details about toolbar features.

7. Exit the application.
What Just Happened? You added and tested the code that will be executed when the buttons

are clicked. This code is similar to the code that you wrote for the menu practice. Once you have
the code for the menu, creating the toolbar is just a matter of layout and some property settings.

657

pkoletzke
Another method for reordering objects is to cut and paste them in the Structure window.
Whenever you paste an object on another object such as a pane, the pasted object will take
a position either on the top or on the bottom of other objects inside that pane. Try cutting
the delete button by selecting it in the Structure window and pressing CTRL-X. Paste it on top
of the toolbar node by clicking that node and pressing CTRL-C. Try this on other buttons, but
be sure to restore the layout when you are done.

658 Oracledi JDeveloper Handbook

Vertical and Floating Toolbars

At runtime, try clicking a nonbutton part of the toolbar and dragging the toolbar to the right or left
side of the window. The toolbar outline will change to a vertical orientation, and when you release
the mouse button, the toolbar will stick to the side of the window, as the following shows:

& =] E3
File Edit Help
E
x|
—
ﬂ Cepartmentld 1]
Departrmenttlame (rdministration
Managerld 200
Locationld 1700

row 1 |Mndiﬂed:fa|se|Editing : DepartmentsView! - Departrmentld |%

You can resize the outer window if you need to provide more room for the toolbar. You can
also drag the toolbar out of the window, as in the following:

& i [=] ES

File Edit Help

Cepartmentld 10
Depattmenttame Administration
Managerld 200
Lacationld 1700

IselEditing . Depattmentsview! - Departmentld |lt|

This creates a separate floating toolbar window that acts in the same way as the windows in
JDeveloper’s Oracle Business Component Browser. Clicking the window close icon in the upper-right
corner of the floating toolbar anchors it again inside the window. The toolbar component provides
this functionality. You can disable floating by setting the floatable property of the toolbar to “False.”

