
DUŠAN PETKOVIC´
A

 B
E

G
IN

N
E

R
’S

 G
U

ID
E

M
icrosoft

®SQ
L Server

®2012
Petković

Get up and running on Microsoft SQL Server 2012 in no time with help from this

thoroughly revised, practical resource. Filled with real-world examples and hands-on

exercises, Microsoft SQL Server 2012: A Beginner’s Guide, Fifth Edition starts by

explaining fundamental relational database system concepts. Then, you’ll learn how

to write Transact-SQL statements, execute simple and complex database queries,

handle system administration and security, and use the powerful analysis, business

intelligence, and reporting tools. XML, spatial data, and full-text search are also

covered in this step-by-step tutorial.

• Install, configure, and customize
SQL Server 2012

• Create and modify database objects with
Transact-SQL statements

• Write stored procedures and user-defined
functions

• Handle backup and recovery
• Automate administrative tasks
• Tune your database system for optimal

performance, availability, and reliability

• Implement security measures using
authentication, encryption, and
authorization

• Work with SQL Server Analysis Services,
SQL Server Reporting Services, and other
business intelligence tools

• Store, display, and query XML documents
• Manage spatial data
• Query documents using MS Full-Text

Search (FTS)

Dušan Petkovic is a computer science professor at the Polytechnic in Rosenheim, Germany. He is the bestselling
author of the previous editions of this book and has written numerous articles for SQL Server Magazine.

Cover Design: Jeff Weeks

$40.00 USD

Essential Microsoft® SQL Server® 2012
Skills Made Easy

´

ALSO AVAILABLE AS AN EBOOK Follow us on Twitter
@MHComputing

Database Management/SQL Server

Fifth Edition

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / ﻿
Blind folio 1

Basic Concepts
and Installation

Part I

Ch01.indd 1 1/24/12 4:39:21 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1
Blind folio 2

Ch01.indd 2 1/24/12 4:39:21 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

In This Chapter

c	� Database Systems:
An Overview

c	� Relational Database
Systems

c	 Database Design
c	 Syntax Conventions

Relational Database
Systems: An Introduction

Chapter 1

Ch01.indd 3 1/24/12 4:39:21 PM

	 4 	 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

This chapter describes database systems in general. First, it discusses what a
database system is, and which components it contains. Each component is
described briefly, with a reference to the chapter in which it is described in

detail. The second major section of the chapter is dedicated to relational database
systems. It discusses the properties of relational database systems and the corresponding
language used in such systems—Structured Query Language (SQL).

Generally, before you implement a database, you have to design it, with all its objects.
The third major section of the chapter explains how you can use normal forms to
enhance the design of your database, and also introduces the entity-relationship model,
which you can use to conceptualize all entities and their relationships. The final section
presents the syntax conventions used throughout the book.

Database Systems: An Overview
A database system is an overall collection of different database software components
and databases containing the following parts:

Database application programsCC

Client componentsCC

Database server(s)CC

DatabasesCC

A database application program is special-purpose software that is designed
and implemented by users or by third-party software companies. In contrast, client
components are general-purpose database software designed and implemented by a
database company. By using client components, users can access data stored on the same
or a remote computer.

The task of a database server is to manage data stored in a database. Each client
communicates with a database server by sending user queries to it. The server processes
each query and sends the result back to the client.

In general, a database can be viewed from two perspectives, the users’ and the
database system’s. Users view a database as a collection of data that logically belong
together. For a database system, a database is simply a series of bytes, usually stored
on a disk. Although these two views of a database are totally different, they do have
something in common: the database system needs to provide not only interfaces
that enable users to create databases and retrieve or modify data, but also system
components to manage the stored data. Hence, a database system must provide the
following features:

Ch01.indd 4 1/24/12 4:39:21 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

	 C h a p t e r 1 :   R e l a t i o n a l D a t a b a s e S y s t e m s : A n I n t r o d u c t i o n 	 5

Variety of user interfacesCC

Physical data independenceCC

Logical data independenceCC

Query optimizationCC

Data integrityCC

Concurrency controlCC

Backup and recoveryCC

Database security CC

The following sections briefly describe these features.

Variety of User Interfaces
Most databases are designed and implemented for use by many different types of users
with varied levels of knowledge. For this reason, a database system should offer many
distinct user interfaces. A user interface can be either graphical or textual. Graphical
user interfaces (GUIs) accept user’s input via the keyboard or mouse and create
graphical output on the monitor. A form of textual interface, which is often used by
database systems, is the command-line interface (CLI), where the user provides the
input by typing a command with the keyboard and the system provides output by
printing text on the computer monitor.

Physical Data Independence
Physical data independence means that the database application programs do not
depend on the physical structure of the stored data in a database. This important feature
enables you to make changes to the stored data without having to make any changes
to database application programs. For example, if the stored data is previously ordered
using one criterion, and this order is changed using another criterion, the modification
of the physical data should not affect the existing database applications or the existing
database schema (a description of a database generated by the data definition language
of the database system).

Logical Data Independence
In file processing (using traditional programming languages), the declaration of a file
is done in application programs, so any change to the structure of that file usually
requires the modification of all programs using it. Database systems provide logical data

Ch01.indd 5 1/24/12 4:39:21 PM

	 6 	 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

independence—in other words, it is possible to make changes to the logical structure of
the database without having to make any changes to the database application programs.
For example, if the structure of an object named PERSON exists in the database system
and you want to add an attribute to PERSON (say the address), you have to modify
only the logical structure of the database, and not the existing application programs.
(The application would have to be modified to utilize the newly added column.)

Query Optimization
Most database systems contain a subcomponent called optimizer that considers a variety
of possible execution strategies for querying the data and then selects the most efficient
one. The selected strategy is called the execution plan of the query. The optimizer makes
its decisions using considerations such as how big the tables are that are involved in the
query, what indices exist, and what Boolean operator (AND, OR, or NOT) is used in
the WHERE clause. (This topic is discussed in detail in Chapter 19.)

Data Integrity
One of the tasks of a database system is to identify logically inconsistent data and
reject its storage in a database. (The date February 30 and the time 5:77:00 p.m. are
two examples of such data.) Additionally, most real-life problems that are implemented
using database systems have integrity constraints that must hold true for the data. (One
example of an integrity constraint might be the company’s employee number, which
must be a five-digit integer.) The task of maintaining integrity can be handled by the
user in application programs or by the DBMS. As much as possible, this task should
be handled by the DBMS. (Data integrity is discussed in two chapters of this book:
declarative integrity in Chapter 5 and procedural integrity in Chapter 14.)

Concurrency Control
A database system is a multiuser software system, meaning that many user applications
access a database at the same time. Therefore, each database system must have some
kind of control mechanism to ensure that several applications that are trying to update
the same data do so in some controlled way. The following is an example of a problem
that can arise if a database system does not contain such control mechanisms:

The owners of bank account 4711 at bank X have an account balance of $2000.1.	
The two joint owners of this bank account, Mrs. A and Mr. B, go to two different 2.	
bank tellers, and each withdraws $1000 at the same time.
After these transactions, the amount of money in bank account 4711 should be 3.	
$0 and not $1000.

Ch01.indd 6 1/24/12 4:39:21 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

	 C h a p t e r 1 :   R e l a t i o n a l D a t a b a s e S y s t e m s : A n I n t r o d u c t i o n 	 7

All database systems have the necessary mechanisms to handle cases like this
example. Concurrency control is discussed in detail in Chapter 13.

Backup and Recovery
A database system must have a subsystem that is responsible for recovery from
hardware or software errors. For example, if a failure occurs while a database application
updates 100 rows of a table, the recovery subsystem must roll back all previously
executed updates to ensure that the corresponding data is consistent after the error
occurs. (See Chapter 16 for further discussion on backup and recovery.)

Database Security
The most important database security concepts are authentication and authorization.
Authentication is the process of validating user credentials to prevent unauthorized users
from using a system. Authentication is most commonly enforced by requiring the user
to enter a (user) name and a password. This information is evaluated by the system
to determine whether the user is allowed to access the system. This process can be
strengthened by using encryption.

Authorization is the process that is applied after the identity of a user is authenticated.
During this process, the system determines what resources the particular user can use.
In other words, structural and system catalog information about a particular entity is
now available only to principals that have permission to access that entity. (Chapter 12
discusses these concepts in detail.)

Relational Database Systems
The component of Microsoft SQL Server called the Database Engine is a relational
database system. The notion of relational database systems was first introduced by E. F.
Codd in his article “A Relational Model of Data for Large Shared Data Banks” in 1970.
In contrast to earlier database systems (network and hierarchical), relational database
systems are based upon the relational data model, which has a strong mathematical
background.

Note
A data model is a collection of concepts, their relationships, and their constraints that are used to represent data
of a real-world problem.

The central concept of the relational data model is a relation—that is, a table.
Therefore, from the user’s point of view, a relational database contains tables and

Ch01.indd 7 1/24/12 4:39:21 PM

	 8 	 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

nothing but tables. In a table, there are one or more columns and zero or more rows. At
every row and column position in a table there is always exactly one data value.

Working with the Book’s Sample Database
The sample database used in this book represents a company with departments and
employees. Each employee in the example belongs to exactly one department, which
itself has one or more employees. Jobs of employees center on projects: each employee
works at the same time on one or more projects, and each project engages one or more
employees.

The data of the sample database can be represented using four tables:

departmentCC

employeeCC

projectCC

works_onCC

Tables 1-1 through 1-4 show all the tables of the sample database.
The department table represents all departments of the company. Each department

has the following attributes:

department (dept_no, dept_name, location)

dept_no represents the unique number of each department. dept_name is its name, and
location is the location of the corresponding department.

The employee table represents all employees working for a company. Each employee
has the following attributes:

employee (emp_no, emp_fname, emp_lname, dept_no)

Table 1-1	 The Department Table

dept_no dept_name location
d1 Research Dallas

d2 Accounting Seattle

d3 Marketing Dallas

Ch01.indd 8 1/24/12 4:39:21 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

	 C h a p t e r 1 :   R e l a t i o n a l D a t a b a s e S y s t e m s : A n I n t r o d u c t i o n 	 9

emp_no emp_fname emp_lname dept_no
25348 Matthew Smith d3

10102 Ann Jones d3

18316 John Barrimore d1

29346 James James d2

9031 Elke Hansel d2

2581 Elsa Bertoni d2

28559 Sybill Moser d1

Table 1-2	 The Employee Table

emp_no project_no job enter_date
10102 p1 Analyst 2006.10.1

10102 p3 Manager 2008.1.1

25348 p2 Clerk 2007.2.15

18316 p2 NULL 2007.6.1

29346 p2 NULL 2006.12.15

2581 p3 Analyst 2007.10.15

9031 p1 Manager 2007.4.15

28559 p1 NULL 2007.8.1

28559 p2 Clerk 2008.2.1

9031 p3 Clerk 2006.11.15

29346 p1 Clerk 2007.1.4

Table 1-4	 The works_on Table

project_no project_name budget
p1 Apollo 120000

p2 Gemini 95000

p3 Mercury 186500

Table 1-3	 The Project Table

Ch01.indd 9 1/24/12 4:39:21 PM

	 1 0 	 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

emp_no represents the unique number of each employee. emp_fname and emp_lname
are the first and last name of each employee, respectively. Finally, dept_no is the
number of the department to which the employee belongs.

Each project of a company is represented in the project table. This table has the
following columns:

project (project_no, project_name, budget)

project_no represents the unique number of each project. project_name and budget
specify the name and the budget of each project, respectively.

The works_on table specifies the relationship between employees and projects. It has
the following columns:

works_on (emp_no, project_no, job, enter_date)

emp_no specifies the employee number and project_no specifies the number of the
project on which the employee works. The combination of data values belonging
to these two columns is always unique. job and enter_date specify the task and the
starting date of an employee in the corresponding project, respectively.

Using the sample database, it is possible to describe some general properties of
relational database systems:

Rows in a table do not have any particular order.CC

Columns in a table do not have any particular order.CC

Every column must have a unique name within a table. On the other hand, CC

columns from different tables may have the same name. (For example, the sample
database has a dept_no column in the department table and a column with the
same name in the employee table.)
Every single data item in the table must be single valued. This means that in every CC

row and column position of a table there is never a set of multiple data values.
For every table, there is at least one column with the property that no two rows CC

have the same combination of data values for all table columns. In the relational
data model, such an identifier is called a candidate key. If there is more than one
candidate key within a table, the database designer designates one of them as the
primary key of the table. For example, the column dept_no is the primary key of
the department table; the columns emp_no and project_no are the primary keys
of the tables employee and project, respectively. Finally, the primary key for the
works_on table is the combination of the columns emp_no, project_no.

Ch01.indd 10 1/24/12 4:39:21 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

	 C h a p t e r 1 :   R e l a t i o n a l D a t a b a s e S y s t e m s : A n I n t r o d u c t i o n 	 1 1

In a table, there are never two identical rows. (This property is only theoretical; CC

the Database Engine and all other relational database systems generally allow the
existence of identical rows within a table.)

SQL: A Relational Database Language
The SQL Server relational database language is called Transact-SQL. It is a dialect
of the most important database language today: Structured Query Language (SQL).
The origin of SQL is closely connected with the project called System R, which was
designed and implemented by IBM in the early 1980s. This project showed that it
is possible, using the theoretical foundations of the work of E. F. Codd, to build a
relational database system.

In contrast to traditional languages like C, C++, and Java, SQL is a set-oriented
language. (The former are also called record-oriented languages.) This means that SQL
can query many rows from one or more tables using just one statement. This feature is
one of the most important advantages of SQL, allowing the use of this language at a
logically higher level than the level at which traditional languages can be used.

Another important property of SQL is its nonprocedurality. Every program written
in a procedural language (C, C++, Java) describes how a task is accomplished, step by
step. In contrast to this, SQL, as any other nonprocedural language, describes what it is
that the user wants. Thus, the system is responsible for finding the appropriate way to
solve users’ requests.

SQL contains two sublanguages: a data definition language (DDL) and a data
manipulation language (DML). DDL statements are used to describe the schema of
database tables. The DDL contains three generic SQL statements: CREATE object,
ALTER object, and DROP object. These statements create, alter, and remove database
objects, such as databases, tables, columns, and indexes. (These statements are discussed
in detail in Chapter 5.)

In contrast to the DDL, the DML encompasses all operations that manipulate the
data. There are always four generic operations for manipulating the database: retrieval,
insertion, deletion, and modification. The retrieval statement SELECT is described in
Chapter 6, while the INSERT, DELETE, and UPDATE statements are discussed in
detail in Chapter 7.

Database Design
Designing a database is a very important phase in the database life cycle, which
precedes all other phases except the requirements collection and the analysis. If the
database design is created merely intuitively and without any plan, the resulting
database will most likely not meet the user requirements concerning performance.

Ch01.indd 11 1/24/12 4:39:21 PM

	 1 2 	 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

Another consequence of a bad database design is superfluous data redundancy, which
in itself has two disadvantages: the existence of data anomalies and the use of an
unnecessary amount of disk space.

Normalization of data is a process during which the existing tables of a database
are tested to find certain dependencies between the columns of a table. If such
dependencies exist, the table is restructured into multiple (usually two) tables, which
eliminates any column dependencies. If one of these generated tables still contains data
dependencies, the process of normalization must be repeated until all dependencies are
resolved.

The process of eliminating data redundancy in a table is based upon the theory of
functional dependencies. A functional dependency means that by using the known value
of one column, the corresponding value of another column can always be uniquely
determined. (The same is true for column groups.) The functional dependencies
between columns A and B is denoted by A ⇒ B, specifying that a value of column A
can always be used to determine the corresponding value of column B. (“B is functionally
dependent on A.”)

Example 1.1 shows the functional dependency between two attributes of the table
employee in the sample database.

 Example 1.1

emp_no ⇒ emp_lname

By having a unique value for the employee number, the corresponding last name of
the employee (and all other corresponding attributes) can be determined. This kind of
functional dependency, where a column is dependent upon the primary key of a table, is
called trivial functional dependency.

Another kind of functional dependency is called multivalued dependency. In contrast
to the functional dependency just described, the multivalued dependency is specified
for multivalued attributes. This means that by using the known value of one attribute
(column), the corresponding set of values of another multivalued attribute can be
uniquely determined. The multivalued dependency is denoted by ⇒ ⇒.

Example 1.2 shows the multivalued dependency that holds for two attributes of the
object BOOK.

 Example 1.2

ISBN ⇒ ⇒ Authors

The ISBN of a book always determines all of its authors. Therefore, the Authors
attribute is multivalued dependent on the ISBN attribute.

Ch01.indd 12 1/24/12 4:39:21 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

	 C h a p t e r 1 :   R e l a t i o n a l D a t a b a s e S y s t e m s : A n I n t r o d u c t i o n 	 1 3

Normal Forms
Normal forms are used for the process of normalization of data and therefore for the
database design. In theory, there are at least five different normal forms, of which
the first three are the most important for practical use. The third normal form for a
table can be achieved by testing the first and second normal forms at the intermediate
states, and as such, the goal of good database design can usually be fulfilled if all tables
of a database are in the third normal form.

Note
The multivalued dependency is used to test the fourth normal form of a table. Therefore, this kind of dependency
will not be used further in this book.

First Normal Form
First normal form (1NF) means that a table has no multivalued attributes or composite
attributes. (A composite attribute contains other attributes and can therefore be divided
into smaller parts.) All relational tables are by definition in 1NF, because the value of
any column in a row must be atomic—that is, single valued.

Table 1-5 demonstrates 1NF using part of the works_on table from the sample
database. The rows of the works_on table could be grouped together, using the
employee number. The resulting Table 1-6 is not in 1NF because the column project_
no contains a set of values (p1, p3).

Second Normal Form
A table is in second normal form (2NF) if it is in 1NF and there is no nonkey column
dependent on a partial primary key of that table. This means if (A,B) is a combination

emp_no project_no
10102 p1

10102 p3

................ …..............

Table 1-5	 Part of the works_on Table

Ch01.indd 13 1/24/12 4:39:21 PM

	 1 4 	 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

of two table columns building the key, then there is no column of the table depending
either on only A or only B.

For example, Table 1-7 shows the works_on1 table, which is identical to the works_
on table except for the additional column, dept_no. The primary key of this table is the
combination of columns emp_no and project_no. The column dept_no is dependent
on the partial key emp_no (and is independent of project_no), so this table is not in
2NF. (The original table, works_on, is in 2NF.)

Note
Every table with a one-column primary key is always in 2NF.

Third Normal Form
A table is in third normal form (3NF) if it is in 2NF and there are no functional
dependencies between nonkey columns. For example, the employee1 table (see Table 1-8),
which is identical to the employee table except for the additional column, dept_name,
is not in 3NF, because for every known value of the column dept_no the corresponding
value of the column dept_name can be uniquely determined. (The original table,
employee, as well as all other tables of the sample database are in 3NF.)

emp_no project_no
10102 (p1, p3)

................

Table 1-6	 This “Table” Is Not in 1NF

emp_no project_no job enter_date dept_no
10102 p1 Analyst 2006.10.1 d3

10102 p3 Manager 2008.1.1 d3

25348 p2 Clerk 2007.2.15 d3

18316 p2 NULL 2007.6.1 d1

...............

Table 1-7	 The works_on1 Table

Ch01.indd 14 1/24/12 4:39:22 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

	 C h a p t e r 1 :   R e l a t i o n a l D a t a b a s e S y s t e m s : A n I n t r o d u c t i o n 	 1 5

Entity-Relationship Model
The data in a database could easily be designed using only one table that contains all
data. The main disadvantage of such a database design is its high redundancy of data.
For example, if your database contains data concerning employees and their projects
(assuming each employee works at the same time on one or more projects, and each
project engages one or more employees), the data stored in a single table contains many
columns and rows. The main disadvantage of such a table is that data is difficult to keep
consistent because of its redundancy.

The entity-relationship (ER) model is used to design relational databases by removing
all existing redundancy in the data. The basic object of the ER model is an entity—that
is, a real-world object. Each entity has several attributes, which are properties of the
entity and therefore describe it. Based on its type, an attribute can be

Atomic (or single valued) CC An atomic attribute is always represented by a single
value for a particular entity. For example, a person’s marital status is always an
atomic attribute. Most attributes are atomic attributes.
Multivalued CC A multivalued attribute may have one or more values for a
particular entity. For example, Location as the attribute of an entity called
ENTERPRISE is multivalued, because each enterprise can have one or more
locations.
Composite CC Composite attributes are not atomic because they are assembled
using some other atomic attributes. A typical example of a composite attribute is
a person’s address, which is composed of atomic attributes, such as City, Zip, and
Street.

The entity PERSON in Example 1.3 has several atomic attributes, one composite
attribute, Address, and a multivalued attribute, College_degree.

emp_no emp_fname emp_lname dept_no dept_name
25348 Matthew Smith d3 Marketing

10102 Ann Jones d3 Marketing

18316 John Barrimore d1 Research

29346 James James d2 Accounting

...............

Table 1-8	 The employee1 Table

Ch01.indd 15 1/24/12 4:39:22 PM

	 1 6 	 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

 Example 1.3

PERSON (Personal_no, F_name, L_name, Address(City,Zip,Street),{College_degree})

Each entity has one or more key attributes that are attributes (or a combination of
two or more attributes) whose values are unique for each particular entity. In Example 1.3,
the attribute Personal_no is the key attribute of the entity PERSON.

Besides entity and attribute, relationship is another basic concept of the ER model.
A relationship exists when an entity refers to one (or more) other entities. The number
of participating entities defines the degree of a relationship. For example, the relationship
works_on between entities EMPLOYEE and PROJECT has degree two.

Every existing relationship between two entities must be one of the following three
types: 1:1, 1:N, or M:N. (This property of a relationship is also called cardinality ratio.)
For example, the relationship between the entities DEPARTMENT and EMPLOYEE
is 1:N, because each employee belongs to exactly one department, which itself has
one or more employees. Also, the relationship between the entities PROJECT and
EMPLOYEE is M:N, because each project engages one or more employees and each
employee works at the same time on one or more projects.

A relationship can also have its own attributes. Figure 1-1 shows an example of an ER
diagram. (The ER diagram is the graphical notation used to describe the ER model.)

Figure 1-1	 Example of an ER diagram

project_no project_name

works_on

Budget

dept_no dept_name Location
PROJECT

EMPLOYEE

N

M

N

1

enter_date

f_namel_nameemployee_no

works_for

DEPARTMENT
Job

Ch01.indd 16 1/24/12 4:39:22 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

	 C h a p t e r 1 :   R e l a t i o n a l D a t a b a s e S y s t e m s : A n I n t r o d u c t i o n 	 1 7

Using this notation, entities are modeled using rectangular boxes, with the entity name
written inside the box. Attributes are shown in ovals, and each attribute is attached to a
particular entity (or relationship) using a straight line. Finally, relationships are modeled
using diamonds, and entities participating in the relationship are attached to it using
straight lines. The cardinality ratio of each entity is written on the corresponding line.

Syntax Conventions
This book uses the conventions shown in Table 1-9 for the syntax of the Transact-SQL
statements and for the indication of the text.

Note
In contrast to brackets and braces, which belong to syntax conventions, parentheses, (), belong to the syntax of
a statement and must always be typed!

Convention Indication
Italics New terms or items of emphasis.

UPPERCASE Transact-SQL keywords—for example, CREATE TABLE. Additional information about the keywords of
the Transact-SQL language can be found in Chapter 5.

lowercase Variables in Transact-SQL statements—for example, CREATE TABLE tablename. (The user must replace
“tablename” with the actual name of the table.)

var1 | var2 Alternative use of the items var1 and var2. (You may choose only one of the items separated by the
vertical bar.)

{ } Alternative use of more items.
Example: { expression | USER | NULL }

[] Optional item(s).
Example: [FOR LOAD]

{ } ... Item(s) that can be repeated any number of times.
Example: {, @param1 typ1} …

bold Name of database object (database itself, tables, columns) in the text.

Default The default value is always underlined.
Example: ALL | DISTINCT

Table 1-9	 Syntax Conventions

Ch01.indd 17 1/24/12 4:39:22 PM

	 1 8 	 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

Summary
All database systems provide the following features:

Variety of user interfacesCC

Physical data independenceCC

Logical data independenceCC

Query optimizationCC

Data integrityCC

Concurrency controlCC

Backup and recoveryCC

Database security CC

The next chapter shows you how to install SQL Server 2012.

Exercises
 E.1.1

What does “data independence” mean and which two forms of data independence exist?

 E.1.2

Which is the main concept of the relational model?

 E.1.3

What does the employee table represent in the real world? And what does the row in
this table with the data for Ann Jones represent?

 E.1.4

What does the works_on table represent in the real world (and in relation to the other
tables of the sample database)?

 E.1.5

Let book be a table with two columns: isbn and title. Assuming that isbn is unique
and there are no identical titles, answer the following questions:

Ch01.indd 18 1/24/12 4:39:22 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

	 C h a p t e r 1 :   R e l a t i o n a l D a t a b a s e S y s t e m s : A n I n t r o d u c t i o n 	 1 9

Is a.	 title a key of the table?
Does b.	 isbn functionally depend on title?
Is the c.	 book table in 3NF?

 E.1.6

Let order be a table with the following columns: order_no, customer_no, discount.
If the column customer_no is functionally dependent on order_no and the column
discount is functionally dependent on customer_no, answer the following questions
and explain in detail your answers:

Is a.	 order_no a key of the table?
Is b.	 customer_no a key of the table?

 E.1.7

Let company be a table with the following columns: company_no, location. Each
company has one or more locations. In which normal form is the company table?

 E.1.8

Let supplier be a table with the following columns: supplier_no, article, city. The key
of the table is the combination of the first two columns. Each supplier delivers several
articles, and each article is delivered by several suppliers. There is only one supplier in
each city. Answer the following questions:

In which normal form is the a.	 supplier table?
How can you resolve the existing functional dependencies?b.	

 E.1.9

Let R(A, B, C) be a relation with the functional dependency B ⇒ C. (The underlined
attributes A and B build the composite key, and the attribute C is functionally
dependent on B.) In which normal form is the relation R?

 E.1.10

Let R(A, B, C) be a relation with the functional dependency C ⇒ B. (The underlined
attributes A and B build the composite key, and the attribute B is functionally
dependent on C.) In which normal form is the relation R?

Ch01.indd 19 1/24/12 4:39:22 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1
Blind folio 20

Ch01.indd 20 1/24/12 4:39:22 PM

