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Chapter 11
Numerical Methods in 

Antenna Modeling

J.-F. Lee, R. Lee, V. Rawat, K. Sertel, and F. L. Teixeira 

In this chapter, we present three main numerical methods that are capable of solving 
complex electromagnetic wave radiation and scattering problems in three-dimensional 
(3D). They are: time-domain methods including finite-difference and finite-element time-
domain methods, finite-element frequency-domain methods, and a conformal domain 
decomposition method using interior penalty formulation. This chapter starts by discussing 
the state-of-art time-domain methods, followed by a detailed description of the frequency-
domain finite-element methods (FEM). Finally, we include a conformal domain 
decomposition method which does not require additional auxiliary variables. Throughout 
the chapter, various complex and electrically large numerical examples are also included.

11.1  Time-Domain Modeling
In this section, we shall discuss some time-domain computational electromagnetics 
(CEM) methods for antenna analysis.1 Due to space limitations, we will focus on the 
finite-difference time-domain (FDTD) and finite-element time-domain (FETD) methods 
[8], [10], [1]. These are two of the most popular methods presently available and widely 
used in many commercially available software packages.

11.1.1  FDTD and FETD: Basic Considerations
Time-domain simulations of antenna problems are sometimes an attractive alternative 
to frequency-domain simulations because they can produce wideband data with a 
single code execution. As a result, they are particularly suited, for example, to ultra-
wideband antenna problems, as will be illustrated later on in this section. Antenna 
scenarios involving nonlinear and/or time-varying media/components are more easily 
tackled in the time-domain as well.

In general, a time-domain discretization strategy for Maxwell’s equations  
may involve either explicit or implicit “marching-on-time” updates (also called  

1 Portions of this material have previously appeared in [1]–[7].
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“time-stepping”). Explict updates refer to time-domain discretizations whereby the 
fields to be determined at a given time step depend only on (known) field values at 
previous time steps. On the other hand, implicit updates refers to time-domain 
discretizations whereby present field values depend not only on previous field 
values but also on each other. As a result, implicit updates require the solution of a 
linear system (typically sparse) at every time step, whereas explicit update may not 
(the latter are denoted “matrix-free”). This is a clear advantage for explicit updates. 
The most celebrated explicit time-domain method is the conventional Yee’s FDTD 
scheme [8]. However, explicit updates are subject to the so-called Courant limit, 
which sets a bound on the maximum size of the time increment from numerical 
stability considerations [11]. In contrast, some implicit updates are not subject to the 
Courant limit and the time increment size in this case can be chosen from accuracy 
considerations only, which can lead to a time increment much larger than the one set 
by the Courant limit.

In its basic form as introduced by Yee and pioneered by Taflove, the FDTD method 
is conceptually very simple and relies on the approximation of time and space 
derivatives of Maxwell curl equations by central differences on staggered grids, 
leading to a scheme which is second-order accurate in both space and time [8]. The 
grid in FDTD is typically a structured rectangular grid. Because FDTD is matrix-free, 
its memory requirements scale only linearly with the number of unknowns. This, 
added to the fact that FDTD is massively parallelizable, makes FDTD quite suited for 
petascale computing and beyond. Higher-order versions of FDTD also exist, which 
trade simulation accuracy by sparsity.

Being naturally constructed for unstructured irregular grids, FETD is quite suited 
for numerical solution of antenna problems in complex geometries where the use of 
a rectangular FDTD grid would give rise to staircasing error. FETD is also suited 
for implementations with p- and h-refinement capabilities. However, FETD 
methods in irregular grids lead to implicit schemes requiring the solution of a 
sparse linear system at every time step. For Maxwell’s equations, it is possible to 
obtain explicit (“matrix-free”) FEM using, for instance, mass (matrix) lumping, 
but not without shortcomings (in particular, they are prone to numerical 
instabilities). There are two basic approaches for constructing FETD algorithms 
for Maxwell equations. The first approach is based on the discretization of the 
second-order vector Helmholtz wave equation (for either the electric or magnetic 
field) by expanding the unknown field in terms of local basis functions—most 
commonly (curl-conforming) Whitney edge elements—followed by application 
of the method of weighted residuals via an inner product with test functions 
[10]. In order to produce symmetric matrices (assuming reciprocal media), the 
set of test functions is chosen identical to the set of basis functions (Galerkin 
testing). The second FETD approach is based on the discretization of the first-
order Maxwell curl equations by expanding the electric and magnetic fields in 
terms of “mixed” elements, most commonly Whitney edge elements for the 
electric field and (div-conforming) Whitney face elements for the magnetic flux 
density [12]. This choice avoids the appearance of spurious modes (by satisfying 
a discrete version of the de Rham diagram). This is followed by either (a) 
application of the method of weighted residuals with appropriate (also mixed) 
test functions or (b) by the use of incidence matrices and construction of discrete 
Hodge operators [12].
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11.1.2  UWB Antenna Problems in Complex Media
Some of the antenna problems where FDTD and FETD are mostly suited for involve 
UWB operation, as noted above, and/or scenarios where the antenna is loaded by 
or in close proximity of inhomogeneous and possibly dispersive media. This, of 
course, necessitates algorithms able to incorporate frequency dispersive effects in 
the time-domain. In linear, time-invariant, isotropic media, the time-domain 
constitutive equation relating the electric field and the electric flux density D is 
typically cast as a convolution between E and the permittivity as follows

	 D r t r t E r d
t

( , ) ( , ) ( , )= −
−∞∫  τ τ τ 	 (11-1)

	   ( , ) ( ) ( , )r t t r te= +0 0δ χ 	 (11-2)

where  ( , ) [ ( , )]r t r= −F 1 ω  is the time-domain permittivity function, F stands for 
Fourier transformation, 0 is the vacuum permittivity, d (t) is the Dirac delta function, 
and χe r t( , ) is the (time-domain) electric susceptibility function. In FDTD or FETD, 
the time variable is discretized as tl = lΔt with l = 0, 1, 2 . . . . We denote E(lΔt) = El, 
and similarly for the other fields. A direct implementation of the convolution above 
would require storage of the entire past time series of El, which is obviously 
impractical. However, due to the exponential nature of the susceptibility kernel, a 
recursive convolution can be implemented instead where storage of only a few previous 
time-step values is needed (the actual number depends on the order of accuracy 
sought—two or three steps are typical in FDTD). The terminology RC is usually reserved 
for the low-order implementation that assumes a piecewise constant electric field 
between each time step. Other implementations for the convolution also exist, with the 
piecewise linear recursive convolution (PLRC) [2] being a popular choice and illustrated 
below. Since conventional FDTD is second-order accurate in time, it is usually not 
advantageous to implement a high order accurate recursive convolution unless the 
time integration in the core FDTD update (of Maxwell curl equations) itself is of high 
order.

In linear time-invariant media, the constitutive equation in dispersive media can 
also be cast as ordinary differential equation (ODE) in time involving D and E or, 
alternatively, involving E and some induced macroscopic polarization field. In linear 
time-invariant media, this ODE is linear with constant coefficients (in time) with the 
generic form
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or an analogous ODE involving E and polarization fields. In some cases, additional 
dynamic fields are present in the physical model so that an ODE system ensues.

The order N1, N2 and the coefficients a r b rp p( ), ( ) above depend on the particular 
dispersion model considered for ( , )r ω . In FDTD, the above ODE can be discretized by, 
for example, recasting it as an equivalent system of ODEs involving only first- and/or 
second-order differential equations, followed by a FD approximation in time of each 
differential equation [2]. This is commonly referred to as the auxiliary differential equation 
(ADE) approach.
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The presence of inhomogeneous media of course poses no difficulties for FDTD or 
FETD as they are volumetric discretization schemes where medium properties are 
naturally described point-wise. Both methods are also able to model anisotropic media 
without much difficulty [1], [13], [14]. A recent survey of FDTD and FETD as applied to 
problems involving media having more complex properties (nonlinear, anisotropic, 
etc.) can be found in [1]

11.1.3  PML Absorbing Boundary Condition
For problems in unbounded regions, which comprise the vast majority of antenna 
problems, an absorbing boundary condition (ABC) needs to be imposed at the outer 
edges of the computational domain to suppress spurious reflection from the grid 
truncation. The most versatile ABC for complex media is the perfectly matched layer 
(PML) [15], [16], which can be implemented in either FDTD [8], [2] or FETD [3]. Apart 
from its numerical efficiency, a major advantage of PML over other ABCs is that its 
reflectionless absorption properties hold independently of the frequency of the incident 
wave (in the continuum limit). Most other ABCs are not suited for dispersive media 
because they require knowledge of the wave velocity near the grid boundary, a quantity 
that is not well-defined for dispersive media in the time-domain. Another advantage of 
PML is that it preserves the nearest-neighbor-interaction property of FDTD and FETD, 
hence retaining their suitability for parallelization. The original PML concept applies only 
to Cartesian coordinates (planar grid terminations). To extend its range of applicability, 
the PML concept was implemented in nonorthogonal FDTD grids and curvilinear FEM 
meshes with good results [17], [18]. However, these implementations were based on an 
approximate matching because they assumed the metric coefficients to be independent of 
the spatial coordinates, which is not true in curvilinear coordinates. Later, true PMLs—in 
the sense of providing reflectionless absorption in the continuum limit—were derived for 
conformal (doubly-curved) mesh terminations [19], [3], based on a complex stretching 
(analytic continuation) of the normal coordinate to the mesh termination [16].

A conformal PML is of interest because it can be placed on the convex hull enclosing 
the antenna/scatterer(s) to reduce the amount of buffer space in the computational 
domain. The savings in memory can be considerable. The conformal PML can be expressed 
in terms of dispersive and anisotropic constitutive tensors  ( )


r  and µ( )


r  that depend on 

the local principal radii of curvature of the FEM mesh termination surface [19].

11.1.4 � A PML-FDTD Algorithm for Dispersive,  
Inhomogeneous Media

In this section, we describe a PML-FDTD method suited for antenna problems in the 
presence of (possibly) dispersive and inhomogeneous media with conductive losses. This 
may be due, for example, to the presence of some dielectric or metamaterial dispersive 
loading and/or the proximity of the antenna to dispersive media such as some soils (as in 
ground-penetrating radar applications). The dispersion in the medium is characterized 
by multispecies Lorentz or Debye models and incorporated into the FDTD scheme via the 
use of the PLRC technique [2], [20]. We use the complex coordinate stretching PML 
formulation [16] to obtain the following modified Maxwell’s equations (e –Jw t convention)

	 ∇ × =s E j Bω 	 (11-4)

	 ∇ × = − +s H j D Eω σ 	 (11-5)
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where σ  is the medium conductivity and

	 ∇ = ∂
∂

+ ∂
∂

+ ∂
∂s

x x y y z z

x
s

y
s

z
s

ˆ ˆ ˆ1 1 1
	 (11-6)

with si = ai + jΩi /ω (for i = x, y, z) being the frequency-dependent complex stretching 
variables (note that ai and Ωi are frequency-independent). Eqs. (11-4) and (11-5) are 
split as follows:

	 1
s

x E j B
x x

sx
∂
∂

× =ˆ ω 	 (11-7)

	
1
s

x H j D E
x x

sx sx
∂
∂

× = − +ˆ ,ω σ 	 (11-8)

which can then be written as

	
∂
∂
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In the time domain, the above become
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∂

× = − ∂
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t
x H a D D a E E dˆ ( )Ω Ωσ σ τ τ

0∫∫ 	 (11-12)

These equations are to be discretized both in time and space. However, before that, 
the dispersive medium characteristics need to be incorporated into these equations. 
This is carried out through the use of complex permittivity function, which results 
in the following magnetic and electric flux equations:

	 B Hsx sx= µ 	 (11-13)

	 D t Esx t sx= *( ) 	 (11-14)

where e(t) = F–1(e(ω)) is the N-species Lorentzian dispersive medium given by the 
following frequency-dependent relative permittivity function

	   ( ) [ ( )]ω χ ω= +∞0 	 (11-15)
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where χ(ω) is the medium susceptibility, ωm is the resonant frequency for the mth 
species, αm is the correspondent damping factor, and e0 and e∞ are the static and 
infinite frequency permittivities, respectively. A corresponding time-domain 
susceptibility function can be defined as

	 ˆ ( ) ˆ ( ) ( )( )χ χ γ α βt t j e u tm m
j t

m

N

m

N
m m= = − +

−=
∑∑

11

	 (11-17)

where β βm m s m mm m mG= − = − ∞ω α γ ω2 2 2, ( ) /   and Gmm

N =
=∑ 1

1
. Note that χ(t) =  

F–1(χ(ω)) = ℜe(χ̂(t)). Substituting (11-15) and (11-17) into (11-14) yields the following 
electric flux definition

	 D t E t t E tt( ) ( ) ( ) ( )= + *∞  0 0χ 	 (11-18)

	 D t E t e t E t
m

N
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1

χ 	 (11-19)

The electric field at t = lΔt using the piecewise-linear approximation for the time 
discretization can be written as

	 E t E
t l

E El t

t

l l( ) ( ).= +
− Δ
Δ

−+1 	 (11-20)

Once substituted into (11-19), we get
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with the constants given as
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	 (11-24) 

The following recursive calculation can be carried out for Qm
l
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Once this is substituted in Eq. (11-21), we obtain the following update equation for the 
electric flux:
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	 (11-26)

Note that in this equation, Pl−1 depends only on Qm
l−1.

At this point, we need to apply both time-stepping and space discretization schemes 
for (11-11) and (11-12). The space discretization follows the conventional Yee’s 
staggered-grid scheme with a central-difference approximation for the derivatives [8]. 
The time discretization for them becomes

	 ∂
∂

× = − −( ) −− + − +
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l
x t sx

l
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 These equations can be arranged to give the time-
stepping scheme as
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Since the left-hand side of (11-31) depends both on Dsx
l+1 and Esx

l+1, it is not suited for time-
stepping. However, substituting (11-26) into (11-31), we have
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(11-31)

where Esx
l+1 can be updated in an explicit time-stepping. This is also used for updating of 

Bsx
l+1 2/  and Hsx

l+1 2/ . The other quantities are updated as follows

	 D E E Psx
l

sx
l

sx
l

sx
l= + +( )− −0 0 1

1 1λ λ 	 (11-32)

	 F F E Esx
l

sx
l

t sx
l

sx
l= + +( )− −1 10 5. Δ 	 (11-33)

	 Q E E Q em sx
l

m m sx
l

m sx
l

m sx
l

, ,
ˆ ˆ ˆ= −( ) + +− −χ ζ ζ0 0 0 1 1 −− +( )α βm m tj Δ 	 (11-34)

	 P e Q esx
l

m sx
l j

m

N
m m t= ℜ ( )− +

=
∑ ,

( ) .α β Δ

1
	 (11-35)

11-ch11.indd   449 2/26/11   3:22:55 PM



New Technical 7-3/8 x 9-1/4 / Frontiers in Antennas: Next Generation Design & Engineering / Frank Gross / 793-1 / Chapter 11

	 450	 F r o n t i e r s  i n  A n t e n n a s :  N e x t  G e n e r a t i o n  D e s i g n  &  E n g i n e e r i n g 	 C h a p t e r  1 1 :   N u m e r i c a l  M e t h o d s  i n  A n t e n n a  M o d e l i n g 	 451

This scheme is then repeated for y and z by replacing them with x. This constitutes the 
complete FDTD algorithm for use in antenna problems involving dispersive and lossy 
media. Another variants of this algorithm can be constructed as well. For example, the 
above PML implementation relied on a field-splitting, akin to the original PML 
formulation of Berenger [15]. There are also alternative, unsplit formulations of the 
PML that are attractive for being strongly well-posed and that can be adapted for 
inhomogeneous, dispersive media as well, as illustrated for example in [2].

11.1.5 � A PML-FETD Algorithm for Dispersive,  
Inhomogeneous Media

We next illustrate a mixed FETD algorithm for application to UWB antenna problems 
that also allows for a simple implementation of the dispersive and anisotropic tensors 
that comprise the conformal PML. In this algorithm, the time update procedure 
associated with the constitutive relations can be derived and implemented separately 
from the update procedure associated with Maxwell curl equations. The conformal 
PML implementation boils down to a modification in the calculation of the two Hodge 
(mass) matrices [�

e
] and [�µ –1] [3].

The derivation of this algorithm starts by expanding electric field intensity E and 
the magnetic field flux density B in terms of Whitney edge elements W i Ni e

1 1, , ,= … , and 
Whitney face elements W i Ni f

2 1, , ,= … , respectively, as follows

	 E e W B b Wi i
i

N

i i
i

N
e f

= =
= =
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1

2

1

, 	 (11-36)

where ei and bi are the unknown expansion coefficients or degrees of freedom (DoFs) of 
the problem, Ne is the number of interior (free) edges in the problem, and Nf is the num-
ber of faces, respectively. If we define column vectors of DoFs as E = [e1, e2, . . . , eNe

]T  
and B = [b1, b2 , . . . , bNf 

]T, where the superscript denotes transpose, the semidiscrete Max-
well equations can be written as [3]

	 [ ] [ ][ ]� D �

∂
∂

= −*
−t sE B Jcurl µ 1

	 (11-37)

	 ∂
∂

= − −
t sB E M[ ]Dcurl

	 (11-38)

where the Nf × Ne matrix [Dcurl] and the Ne × Nf matrix [D*
curl] are curl incidence matrices 

(discrete analogues of the exterior derivative d acting on 1-forms) on the primal and 
dual grids, respectively [21]). The primal grid is chosen as the finite-element mesh itself. 
Both [Dcurl] and [D*

curl] are metric-free matrices whose elements assume only {–1, 0, 1} 
values. Up to boundary terms, we have [D*

curl] = [Dcurl]
T [21]. The column vectors J =  

[j1,  j2 , . . . , j Ne]
T and M = [m1, m2 , . . . ,mNf

]T represent (known) electric and magnetic source 
current densities, respectively. The column vector M is associated with faces of the 
primal (finite-element) mesh, while J is associated with faces of the (implicit) dual mesh 
[21]. The Ne × Ne matrix [�

e
] and the Nf × Nf matrix [�µ –1] represent discrete Hodge star 

operators, an isomorphism between primal grid variables and dual-grid variables that 
incorporate all metric information of the mesh [21]. In the finite-element literature, 
these matrices are commonly referred as mass matrices.
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Using a leap-frog time discretization in (11-37) and (11-38), the FETD update 
equations become

	
[ ] [ ] [ ] [ ]� � D � E E B Jn n

curl
T n

s
nt t+ += + −−

1
1

1
2Δ Δµ

++ 1
2 	 (11-39)

	
B B E Mn n

curl
n

s
nt t+ −= − −

1
2

1
2 Δ Δ[ ] .D 	 (11-40)

The solution for E and B at each time step can be obtained by solving a sparse linear 
system for E for each n. Since [�

e
] is sparse and symmetric positive-definite, the linear 

solve can be done efficiently using direct (for small- and moderate-size problems) or 
iterative (for large-scale problems) solvers. The above update equations are similar to 
the leap-frog update equations in FDTD, except for the fact that in the latter case, [�

e
] is 

diagonal and the inversion is trivial.
If we denote i and j as the row and column indices respectively, the (Galerkin) 

Hodge matrices are given by the following volume integrals

	 [ ] ( )� ij i jW r W d= ∫ 1 1· · Ω
Ω

	 (11-41)

	 [ ] ( ) ,�µ µ− = −∫1
2 1 2

ij i jW r W d· · Ω
Ω

	 (11-42)

along the support where Ω of the basis functions.
Inside the PML, the above permittivity and permeability tensors are functions of 

frequency:  ( , )r ω  and µ ω( , )r , as they depend on complex stretching variables that are 
frequency-dependent. As a result, the update of the time-domain constitutive equations 
require the use of techniques such as PLRC or ADE described before. Reference [3] provides 
a description of the implementation of the ADE technique to discretize (11-41) and (11-42) 
in the FETD algorithm. Of course, the PLRC or ADE techniques can also be utilized when 
dispersive media (dielectrics, metamaterials) are present within the physical domain [12].

11.1.6  Examples

11.1.6.1  UWB Dielectric Horn Antenna
For detection of shallow objects by ground-penetrating radar (GPR) where high sensi-
tivity is not an issue, elevated antennas are often used for easier scanning and better 
calibration. On the other hand, most GPR antennas used for the detection of deep tar-
gets are operated close to the ground so that most of the energy is radiated into the 
ground. However, characteristics of such GPR antennas while in field operation are 
typically difficult to determine a priori because of the large coupling with the environ-
ment. This also makes calibration quite difficult. Dielectric horn antennas are good  
candidates to make antenna characteristics less susceptible to ground effects because 
the feed system is naturally elevated. Moreover, apart from truncation effects, the ge-
ometry of dielectric horn antennas is self-similar and hence they are good candidates 
for UWB operation [4].

Figure 11-1 shows the geometry of the feed system with the two-arm metallic plate 
launchers and a detail of the FDTD grid used at the feed point of the dielectric horn antenna 
UWB antenna considered. This feed system is truncated and the space between the metallic 
plates is filled with a pyramidal dielectric horn with relative permittivity er = 5. The FDTD 
grid discretization of the dielectric horn is illustrated in Fig. 11-2.

11-ch11.indd   451 2/26/11   3:22:57 PM



New Technical 7-3/8 x 9-1/4 / Frontiers in Antennas: Next Generation Design & Engineering / Frank Gross / 793-1 / Chapter 11

	 452	 F r o n t i e r s  i n  A n t e n n a s :  N e x t  G e n e r a t i o n  D e s i g n  &  E n g i n e e r i n g 	 C h a p t e r  1 1 :   N u m e r i c a l  M e t h o d s  i n  A n t e n n a  M o d e l i n g 	 453

Figure 11-1  (a) Geometry of the metallic arm feeds of the UWB dielectric horn antenna, where 
the space between the arms is filled with a pyramidal dielectric horn. (b) Detail of the FDTD-grid 
discretization of the two-wire feed systems and coupling with the two metallic arms feeds.
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Figure 11-2  FDTD-grid discretization of the dielectric horn and the two opposite-side metallic 
arm feeders
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Figure 11-3 compares the input impedance (real part) of the two-arm feed system 
computed by FDTD, for various plate angles and for flare angle θh = 60 degrees, against 
analytical results [22]. Figure 11-4 shows the input impedance of the dielectric horn 
antenna versus frequency computed by FDTD. The dielectric load has relative permit-
tivity er = 4 in this case. The input impedance shows little variation in the 500 MHz to  
2 GHz range [4].

11.1.7  Dual-Polarized UWB-HFBT Antenna
Bow-tie antennas are also widely used for UWB applications. To reduce ground 
susceptibility in GPR applications, bow-tie antennas can be fed by a dielectric horn feed 
similar the one previously discussed. Moreover, a four arm consideration can be 
adopted to allow for dual-polarization (polarimetric) operation.

Figure 11-5 shows the geometry of a dual-polarized UWB horn-fed bow-tie (HFBT) 
antenna designed for GPR operation [5]. This is somewhat similar to a planar bow-tie 
dipole with the feed point now being raised off the ground. This reduces the sensitivity 
of the surge impedance to ground properties. Each antenna arm is smoothly curved in 
the transition from the horn section to the planar bow-tie dipole section. The ends of the 

Figure 11-3  Comparison of the input impedance of the two-arm feed system, computed by FDTD 
and by an analytical approach. The flare angle is θ

h
 = 60 degrees, and various plate angles are 

considered.
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Figure 11-4  Input impedance of the horn-fed bow-tie antenna versus frequency computed by 
FDTD, for flare angle θ

h
 = 60 degrees and various plate angles (Source:[4], ©IEEE, 2004)
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Figure 11-5  Illustration of the UWB-HFBT antenna geometry and dimensions

Coaxial Cable
R-card

PEC launcher

2.52 m
0.63 m2.52 m

0.1 m

εr = 1.0

εr = 5.0

dipoles are terminated with tapered resistive cards (R-cards). The objective of the 
R-cards is to reduce reflections by gradually dissipating the currents propagating 
toward the end of each antenna arm. This increases the antenna bandwidth. The 
prototype considered here has a dielectric horn with er = 5. The plate angle of each 
antenna arm is 11.5 degrees. The horn angle itself is approximately 150 degrees.
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A full scale FDTD model of the UWB HFB antenna prototype requires computational 
grid spanning a minimum of 2.5 m × 2.5 m × 0.63 m space. A spatial cell size of 6.3 mm 
was chosen to accurately model the geometrical details of the antenna and cable 
structure [5]. This yields a grid with approximately 96 million unknowns. The four 
antenna arms were modeled as perfect electric conducting (PEC) plates, and the curved 
edges and surfaces were approximated by staircases. Each tapered R-card attached to 
the end of the PEC arm is 63 cm in length and is implemented via a conductive sheet in 
FDTD. The ground was assumed to be a lossless half space with er = 5.

Figure 11-6 shows side-view snapshots, computed by FDTD, of the field distribution 
of this antenna launched into the ground at two different time instants: t = 7.45 nsec and 
t = 13.09 nsec [5]. Figure 11-7 shows snapshots at the same time instants for the same 
antenna geometry except that the R-cards are now absent. The ringing effect from the 
antenna terminations and the perturbation of the field distribution are clearly visible in 
Fig. 11-7. In general, FDTD models provide very useful visualization of dynamic field 
distributions that can help identify undesired radiation and reflection sources.

Figure 11-6  FDTD simulation snapshots of the electric field strength in dB scale with R-card 
attached
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Figure 11-7  FDTD simulation snapshots of the electric field strength in dB scale without R-card 
attached
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11.1.8  Time-Domain Modeling of Metamaterials
In recent years, there has been an upsurge in the design and development of new 
materials under the conceptual umbrella of “metamaterials,” as they show great 
promise to expand the design space of RF and optical devices and antennas. FDTD and 
FETD have proved to be quite effective tools for the analysis of metamaterials.

One interesting periodic material arrangement that provides a photonic crystals 
(PhCs) with a degenerate band edge (DBE) is shown in Fig. 11-8a. In this arrangement, 
the unit cell has two misaligned anisotropic dielectric layers, A1 and A2, and one isotropic 
layer B. The dispersion relation can be tailored in order to produce a degenerate band 
edge by adjusting the thickness and permittivity of each layer. DBE PhCs can be 
designed to yield a (approximately) quartic dispersion relation just below the DBE 
frequency rather than the conventional quadratic dispersion relation present below a 
regular band edge (RBE). Fabry-Perot resonances (associated with narrowband 
transmission peaks) can be exploited in finite-size slabs made of such periodic stacks. 
Finite-size DBE PhCs are able to produce gigantic amplitude increase at Fabry-Perot 
resonances that have very good transmittance (matching) properties, which can be 
exploited by antennas operating in the resonance frequency [6].

Figure 11-8b shows the simulated transmission spectrum with the Fabry-Perot 
resonances below the DBE frequency, for N = 8 and N = 16, where N is the number of 
units cells. As N increases, the resonances move close to the DBE frequency (while the 
transmission bands are narrowed). As Fabry-Perot resonances move just below the 
band edge, a dramatic increase in field intensity is produced because of slow wave 
effects (decrease in the group velocity). Hence, larger N leads to greater growth in field 
intensity. Figure 11-9 shows the FETD computed field distribution squared inside this 
metamaterial. Note that because the group velocity is smaller below the DBE frequency 
(from the quartic dispersion relation) than the RBE frequency (from the quadratic dis
persion relation), a much larger increase in the field amplitude is produced at DBE-
based Fabry-Perot resonances than at the RBE counterpart for the same N.

Plasmon resonance structures have become the subject of intense study in recent 
years as potential building blocks of, among other devices, nanoantennas and 
(subwavelength) optical waveguides at the nanoscale (down to tens on nm). Localized 

Figure 11-8  (a) Schematic of a DBE-PhC composed of two anisotropic dielectric layers (A-layers) 
and one isotropic dielectric layer (B-layer). The dispersion relation can be tailored in order to produce 
a degenerate band edge by adjusting the thickness and permittivity of each layer. (b) Associated 
transmission spectrum for different number of unit cells N (Source: [6], © Am. Phys. Soc., 2008).
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surface plasmon resonances due to coherent electron oscillations excited at metal/
dielectric interfaces yield highly localized field enhancement and provide guiding and 
confinement of electromagnetic waves well below the diffraction limit [7]. These 
structures are usually made of noble metals such as Ag and Au that exhibit dispersive 
response at optical frequencies, which can be modeled by ADE or PLRC techniques.

Figure 11-10 shows FDTD snapshots of the field intensity along a straight chain and 
a T-junction of a plasmon waveguide made of Au particles excited at center frequency 
of 580 THz. The excitation is a dipole located the left end of the waveguide. The particles 

Figure 11-9  Steady-state (time-average) field intensity |E|2 inside a PhC with N = 16. The 
incident wave has unit amplitude. Increase in the field intensity is observed in DBE-PhC versus 
RBE-PhC (Source: [6], © Am. Phys. Soc., 2008).
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Figure 11-10  (a) Snapshot of the field distribution computed along a linear chain plasmon 
waveguide at 516 nm. (b) Snapshot of the field distribution computed along a T-junction (see text 
for details).
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are nanospheres with radius 25 nm and center-to-center spacing of 75 nm. The FDTD 
grid cell size has 1.5625 nm; 640 × 256 × 256 cells are used for straight chain and 448 × 
544 × 256 cells for T-junction simulations. A Drude model is used to model the Au 
dielectric response in the frequency range considered. The corresponding wavelength 
is 516 nm, i.e., deep subwavelength guiding is achieved by these waveguides of lateral 
dimension 50 nm.

11.2  Frequency-Domain FEM
Geometrical and material modeling flexibility of the FEM, has made it one of the most 
versatile design tools for modern antenna engineering. Recent advances in FEM 
modeling, coupled with fast and robust solution methods and general purpose mesh 
generation/graphical interface tools, have been instrumental in the proliferation of 
several commercial FEM packages in the past decade. Today, such commercial software 
are the antenna engineers’ most efficient tools in tackling modern antenna design chal
lenges. In this section, we outline the basic components of the FEM and summarize 
some of the aspects that makes it a popular design tool for antenna engineering (see 
e.g., [23]–[26], [10] on FEM for antenna analysis).

The partial differential equations (PDEs) that govern “wave phenomena” is of 
particular interest to the antenna engineer for obvious reasons. Since a full review of 
Maxwell’s equations is beyond the scope of this chapter, we will simply focus on the 
time-harmonic wave equation to outline the FEM.

11.2.1  Weak Formulation of Time-Harmonic Wave Equation
In order to develop time harmonic FEM formulation, we will start by introducing the 
so-called “weak formulation” of the wave equation. For completeness, Maxwell equations 
in frequency domain (an e –iw t time convention is assumed and suppressed) are

	 ∇ × = ∇ × = − + ∇ = ∇ =E B H D j D Bi i eω ω ρ, , , ,· · 0 	 (11-43)

where E and H are the electric and magnetic field intensities, and D and B are the 
electric and magnetic flux densities, respectively. Also, J denotes the electric current 
density and ρe is the electric charge density (related to electric current density via the 
continuity equation ∇ · J = iw ρe). In addition, for linear anisotropic media, the electric 
and magnetic field intensities and flux densities are related through constitutive 
parameters, viz. D E=  ·  and B H= µ · .

The wave equation for the electric field intensity is constructed by coupling Maxwell’s 
curl equations for the electric and magnetic field intensities. Namely, by taking the curl 
of Maxwell’s first equation (∇ × ∇ × E = iw ∇ × B) and then substituting Maxwell’s second 
equation (along with the constitutive relation B H= µ · ), we arrive at

	 ∇ × ⋅ ∇ × − =−µ ω ω1 2( ( ) ( ) ( ) ( )r E r r E r J r) · i i 	 (11-44)

where ω = 2π f denotes the angular frequency. In (11-44), Ji(r) represents the impressed 
excitations within the solution domain v. We remark that the right-hand side of (11-44) 
vanishes for source-free regions. A similar “dual” equation can also be obtained for the 
magnetic field intensity H(r).
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Equation (11-44) is a strong, point-wise condition that the electric field intensity E 
must satisfy at all locations r within the domain of a given problem.

In general, as seen in Fig. 11-11, the solution domain may contain perfectly 
conducting and/or lossy surfaces, impedance boundaries, and homogeneous-isotropic/
anisotropic materials, as well as inhomogeneous material regions. The versatility of the 
FEM stems from (11-44) in which material properties (e.g., linear, inhomogeneous, and 
anisotropic) are explicitly expressed.

Although as simple and as general (11-44) is, it is a mathematically strong statement 
whose solution cannot be readily obtained for arbitrary antenna geometries. However, 
this strong statement can be relaxed by seeking approximate field solutions that satisfy 
(11-44) in an average sense. Such an approximate form of (11-44) is mathematically 
called the “weak form.”

In order to relax the point-wise statement of (11-44), we proceed by defining 
auxiliary functions that will help us measure the error between the right- and left-hand 
sides of (11-44). Using a suitable inner product (please see [23], [10], [27]–[30] for a 
rigorous treatment) defined over the domain of the electric field E and a set of testing 
functions W = {wj, j = 1 , . . . , N}, we can rewrite (11-44) as

	 dv k i dv
v

i
v

W E E W J⋅ ∇ × ∇ × −{ } =∫ ∫0
2 ωµ · 	 (11-45)

where, for the sake of simplicity, we consider a linear, isotropic, and piecewise 
homogeneous domain, and the implicit r dependence is understood.

Our next step is to relax the double differentiation (i.e., double curl operation) 
requirement in (11-45). This is simply done using the vector identity

	 ∇ × = ∇ × − ∇ ×· · ·( ) ( ) ( ),A B A B A B 	 (11-46)

with A = W and B = ∇ × E, and (11-45) can be written as

  dv dv k dv i
vv

∇ × ∇ × − ∇ × ∇ × − =∫∫ · · ·{ ( )} ( ) ( )W E W E W E0
2 ωµµ dv i

vv
W J· .∫∫ 	 (11-47)

Figure 11-11  Representation of a typical antenna problem involving multiple antennas and 
material regions
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Next, Gauss theorem is applied to the first term of (11-47), which results in the weak 
form of the wave equation

dv k dv dsn
vv s

( ) ( ) ˆ { ( )}∇ × ∇ × − − × ∇ ×∫∫ =
W E W E W E· · ·0

2
∂∂∫ ∫=
v

i
v

i dv ωµ W J· . 	 (11-48)

In (11-48), n̂ in the outward normal vector on the boundary s = ∂ v. The surface integral 
can further be simplified using the vector identity

	 ˆ ( ) ( ˆ) ( ˆ ),n n n· · ·A B A B B A× = × = × 	 (11-49)

resulting in the alternative expression

dv k dv ds n
v v s

( ) ( ) ˆ ( )∇ × ∇ × − + × ∇ × =∫ ∫ ∫W E W E W E· · ·0
2  ii dv i

v
ωµ W J·∫ . 	 (11-50)

The weak statements (11-48) and (11-50) must now be satisfied for a set of testing 
functions W. Hence, unlike (11-45), an approximate solution for E can be computed via 
the FEM.

It is also interesting to note that if we choose our testing function W to be the same 
as the electric field W = E (Galerkin testing, see [23], [10]), (11-48) becomes an energy 
conservation statement

	 dv k dv i dsn
v v s

( ) ( ) ˆ ( )∇ × ⋅ ∇ × − ⋅ = ⋅ ×∫ ∫ ∫E E E E E H0
2 ωµ ++ ⋅∫i dv i

v
ωµ E J 	 (11-51)

where the left-hand side is the total electric and magnetic energy contained in v and the 
right-hand side is the total power crossing s and power delivered into the volume by 
the impressed source.

The FEM seeks solutions to (11-48) and (11-50), which are weaker statements than 
(11-44), i.e., they are satisfied in an average sense over the whose solution space v. 
Thus, solutions E to (11-48) may not necessarily satisfy the original wave equation 
(11-44) exactly, only approximately. The construction of (11-48), starting from (11-44) 
and imposing (11-45) is called the weighted residuals method. Galerkin’s method, or 
Galerkin’s testing belongs to this family when the weighting functions is chosen to be 
the same as the unknown function, as was done in arriving at (11-51). Alternatively, 
one can arrive at the same weak form statement (also called the variational statement) 
through the Rayleigh-Ritz procedure, by minimizing the functional associated with 
the wave equation. Due to space limitations, the reader is referred to [23], [10] for 
more information on the functional approach in constructing the variational 
statement.

In the following, we seek solutions to the electric field intensity E in the domain v 
that satisfy (11-48) exactly, thus (11-44) weakly. Obviously, we can start by assuming a 
solution E and test (by choosing suitable testing functions W) whether this solution 
satisfies (11-48). However, since we can have infinitely many choices for assuming a 
solution E, this approach would rather inefficient. Alternatively, we may introduce a 
tessellation of the problem domain v via a connected mesh of simple shapes (triangular 
or quadrilateral finite elements for two-dimensional (2D) problems and tetrahedral or 
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hexahedral finite elements for 3D) and express the unknown electric field intensity E as 
a sum of known functions with unknown coefficients, viz.

	 E r e r( ) ( ).=
=
∑ ai i
i

N

1

	 (11-52)

The “basis” functions, {ei, i = 1 , . . . , N}, are defined on the finite elements in terms of the 
local coordinates (to facilitate concise universal expressions). They should also respect 
the properties of the unknown electric field E. For instance, the vector-field nature of E 
should be respected by the choice of ei and conditions, such as ∇ × ei being well-defined 
must be satisfied.

Tetrahedral, hexahedral, and triangular-prism elements and associated basis 
functions are the most popular 3D finite elements used in antenna engineering. In the 
following section, we briefly summarize the usual 2D and 3D finite elements.

11.2.2  Geometry Modeling and Finite-Element Representations
As noted above, the first step in implementing the FEM to analyze a radiating structure 
is to approximate the antenna geometry and the surrounding solution domain v by a 
connected mesh of geometrically simple elements (see Fig. 11-12). This mesh forms an 
approximation to the solution domain, and basis functions are expressed directly on 
the mesh elements. Some popular choices for 2D elements are depicted in Fig. 11-13, 
and those for 3D elements are shown in Fig. 11-14. For example, a 2D triangular element 
is defined by its three vertices r1, r2, r3, as shown in Fig. 11-15. Any point r inside the 
element has the barycentric coordinates (ζ1, ζ2, ζ3) where ζi is defined with respect to the 
area of each subtriangle formed by connecting r to the vertices, viz. ζi = Ai /A, where A = 
A1 + A2 + A3 is the area of the triangle. Similarly, 4 barycentric variables can be constructed 
for tetrahedral elements.

Figure 11-12  FEM meshes of the Vivaldi antenna using (a) tetrahedral elements, (b) triangular-
prism elements, and (c) hexahedral elements
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Alternatively, we can also use a parametric representation of the elements. For 
instance, a 2D quadrilateral element defined by its 4 vertices as depicted in Fig 11-13c 
can be considered to be the map of a unit square in a (u, v) domain, viz. r(u, v) = [x(u, v), 
y(u, v), z(u, v)]. Here, the parametric transformation, are constructed such that the  
4 corners of the unit square in the (u, v) space is mapped to the given 4 vertices of the 
quadrilateral, a.k.a. r1 = r (u = 0, v = 0), r2 = r (u = 1, v = 0), r3 = r (u = 1, v = 1), and r4 = r (u = 0, 
v = 1). Both the barycentric (ζ1, ζ2, ζ3) representations and the (u, v) parameterizations 

Figure 11-13  2D finite elements: (a) flat Triangular, (b) Curvilinear, 6-point triangular,  
(c) Curvilinear, 7-point triangular, (d) Flat, quadrilateral, (e) Curvilinear, 8-point quadrilateral, 
and (f) Curvilinear, 9-point quadrilateral.
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Figure 11-14  Popular 3D finite elements: (a) Tetrahedral, (b) Triangular prism (right angled),  
(c) Trilinear hexahedral (brick), (d) Curved tetrahedral, (e) Distorted prism, (f) Triquadratic, and 
hexahedral element.
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allow for simple expressions for the elements and the basis functions defined on these 
elements. This simplicity is particularly useful for implementation ease. Representations 
of 3D tetrahedral, hexahedral, and triangular-prism elements are summarized in the 
following subsections. Curvilinear versions of such elements can be found in various 
journal papers [31]–[33].

11.2.2.1  Tetrahedral Elements
The position vector r inside the tetrahedral element is given in terms of the 4 barycentric 
parameters, ζi, defined by connecting the position vector to the 4 vertices defining the 
element. Each barycentric variable is defined as ζi = Vi  /V, where Vi is the volume of the 
subtetrahedron defined by the position vector r and the face of the tetrahedron across 
the ith vertex, and V is the volume of the element V = V1 + V2 + V3 + V4 (see Fig. 11-16).

11.2.2.2  Hexahedral Elements
Much like the 2D quadrilateral elements, 3D hexahedra can be simply defined as a 
mapping of a unit cube in the parametric (u, v, w) space, viz.

	 r r( , , ) ( ) ( ) ( )u v w L u L v L wi j k ijk
kji

=
===

∑∑∑
1

2

1

2

1

2

	 (11-53)

Figure 11-15  Parametric representations of 2D finite elements: (a) Barycentric coordinates for a 
triangular element, (b) (u, v) parametrization of a quadrilateral.
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Figure 11-16  3D tetrahedral element
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where rijk i = 1, 2; j = 1, 2; and k = 1, 2 are the 8 vertices of the element as shown in  
Fig. 11-17. Also, L1(τ) = τ and L2(τ) = 1 – τ, are the first-order Lagrange interpolators for 
τ = u, v, w. We also note that for (11-53) to be valid, the vertices of the element must lie 
on a topologically rectangular grid.

11.2.2.3  Triangular-Prism Elements
The distorted triangular-prism element [34] shown in Fig. 11-18 can be represented in 
terms of the parametric height variable t in addition to the barycentric (ζ1, ζ2, ζ3) 
coordinates of the triangular faces, viz.

	 r r r r r r( , , , ) { }( ) {ζ ζ ζ ζ ζ ζ ζ1 2 3 1 1 2 2 3 3 1 41t t= + + − + + 55 2 6 3ζ ζ+ r }t 	 (11-54)

Figure 11-17  3D hexahedral element and the illustrations of covariant and contravariant 
basis vectors
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Figure 11-18  Triangular-prism element and the illustration of its parametric representation
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where ri, i = 1 , . . . , 6 are the 6 vertices of the distorted prism. As a special case of the 
distorted prism element, the right-angled prism element is particularly useful in for 
layered media, often encountered in modeling antennas.

The previous definitions provide the mathematical tools to represent the finite 
elements. Next, we summarize some popular vector basis functions defined on these 
finite elements to express the electric field unknowns in FEM.

11.2.3  Vector Finite Elements
For programming simplicity, it is desirable to use low-order polynomial expressions to 
construct the basis functions. As such, the following are among the most widely utilized 
in FEM for antenna modeling [35].

11.2.3.1  Vector Basis Functions on Tetrahedra
Associated with each of the 6 edges of the tetrahedral element, we define 6 basis functions 
expressed in terms of the barycentric coordinates. Assuming a local edge numbering 
given in Table 11-1, the basis function associated with the kth edge is given as

	 ek ij i j j il i j= ∇ − ∇ =( ), , , , ,ζ ζ ζ ζ 1 4 	 (11-55)

where lij = lk is the length of the edge between the vertices i and j forming the kth edge. 
It can be shown that ∇ · ek = 0 and ∇ × ek = lij 2∇ζi × ∇ζj.

11.2.3.2  Vector Basis Functions on Hexahedra
One can define the basis function for hexahedral elements in a slightly different manner, 
in the parametric (u, v, w) space. To do so, we start by introducing partial derivatives 
(a.k.a. parametric covariant vectors) aτ = ∂r/ ∂t where t = (u, v, w). Next, we define a 
complementary set of vectors, namely the contravariant vectors as

	 a a a a a a a a au
v w

v
w u

w
u vV V V

= × = × = ×
+ + +

1 1 1
, , , 	 (11-56)

Local Edge Number First Node Second Node

1 1 2

2 1 3

3 1 4

4 2 3

5 4 2

6 3 4

Table 11-1  Local Edge Numbering for a Tetrahedral Element
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where V+ = au · (av × aw) is the differential volume used for normalization. Using 
these contravariant vectors, first-order vector finite-element functions can be 
written as

	

e a e a

e a e
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1
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= − =

( )( ) , ( )( )

( )( ) , (
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	 (11-57)

Curls of the above functions can be easily evaluated using the standard formula
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(11-58)

where g is the determinant of the metric tensor

	 g
u u u v u w

v u v v v w=
⋅ ⋅ ⋅
⋅ ⋅ ⋅

( ) ( ) ( )
( ) ( ) (
a a a a a a
a a a a a a ))

( ) ( ) ( )
.

a a a a a aw u w v w w⋅ ⋅ ⋅
	 (11-59)

For a rectangular hexahedral element (a.k.a. the brick element), the above expressions 
can be simplified via au = au = r2 – r1, av = av = r4 – r1, and aw = aw = r5 – r1. In addition, the 
metric tensor determinant becomes g V=  where V is the volume of the rectangular 
prism. Subsequently, the curls of the brick element basis functions also simplify as
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11.2.3.3  Vector Basis Functions on Triangular-Prism Elements
Since the triangular-prism element is a hybrid between triangular elements and 
quadrilateral elements, the basis functions for triangular-prism elements can be 
expressed as a combination of the barycentric and parametric representations. Namely, 
the vector functions associated with each of the 6 edges of the element are given as
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where at is the vector defined by r (ζ1, ζ2, ζ3, t = 1) – r (ζ1, ζ2, ζ3, t = 0).
We note here that the electric field boundary conditions require tangential 

continuity across material interfaces (where there are no magnetic currents). Hence, to 
carry on with the FEM implementation, the basis functions defined above need to be 
properly paired across neighboring finite elements such that tangential field continuity 
is explicitly enforced in the basis function expansion. That is, only a single “composite” 
basis function (hence a single unknown), spanning several elements that have the 
associated edge in common, is associated with each edge of the mesh. Indeed, the 
definitions above constitute only partial-basis functions. Basis functions associated 
with each edge of the mesh are constructed by pairing all such partial-basis functions 
that share the common edge. For instance, an internal edge in a tetrahedral mesh might be 
shared by 6 elements, in which case, the edge basis function would be the collection of all 
6 partial-basis functions defined over the corresponding neighboring tetrahedra.

As we discuss in Sec. 11.2.4, the FEM discretization of the weak form in (11-48) 
relies on the computation of basis functions defined over each element using local 
coordinates and provides contributions of edge-based basis functions into the global 
FEM matrix.

11.2.4  Computation of FEM Matrices
We are now ready to discretize the weak form of the wave equation (11-48) numerically. 
To do so, we first insert the expansion (11-52) into (11-48), viz.

dv x k dv x
v i i
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i
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(11-62)
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In order to be able to construct a linear system for the N unknowns, we next choose N 
testing functions wj, j = 1 , . . . , N, giving
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(11-63)

which can be written in a compact matrix form [Z] {x} = { f }. However, note that the 
surface integral contribution is written in terms of the surface magnetic field, which 
itself is an unknown. Thus the boundary magnetic field H must be dealt with before we 
can transform (11-63) into a matrix equation. Several efficient methods of mesh 
truncation are addressed next.

11.2.4.1  Truncation of the Solution Domain

11.2.4.1.1    Absorbing Boundary Conditions  The simplest and one of the most popular 
methods for mesh truncation for wave equation is to simply impose the far-field 
behavior of fields as the boundary condition on the surface mesh bounding the FEM 
domain. As is well-known, fields radiating away from a source can be approximated as 
locally planar spherical waves in the far zone. That is, the following relation holds for 
the tangential components of electric and magnetic field intensities:

	 ˆ ( ) ˆ { ˆ ( )}.n ik n n× = × ×H r E rscat scat
0 	 (11-64)

The above condition approximately applies for the mesh truncation surface if it is 
sufficiently away from the sources and/or scattering centers within the FEM domain. 
However, since the total field within the domain just inside the truncation boundary 
consists of incident and scattered fields, (11-64) must be modified as

	 ˆ ( ) ˆ { ˆ ( )} ˆ ( ) ˆ { ˆn ik n n n ik n× − × × = × − ×H r E r H r0 0
inc nn × E rinc ( )}. 	 (11-65)

Using (11-65), the unknown H under the surface integral in (11-50) can be written in 
terms of the electric field intensity E(r) as
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(11-66)

Next, we transfer the first term involving the unknown E to the left-hand side of (11-48) 
and the terms involving the known incident field to the right-hand side. Doing so,  
(11-48) becomes
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(11-67)
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 Alternatively, this can be cast in a more symmetric form as

	
dv k dv ik ds n n

v v
( ) ( ) ( ˆ ) ( ˆ∇ × ⋅ ∇ × + ⋅ − × ⋅ ×∫ ∫W E W E W0

2
0 EE

W J W H W

)

( ˆ ) ( ˆ

s

v
ii dv ds n ik ds n

∫

∫= ⋅ − ⋅ × − ×ωµ inc
0 )) ( ˆ ).⋅ ×∫∫ n

ss
Einc

	
(11-68)

In the above, the right-hand side is recognized the total excitation, consisting of an 
incident field excitation due to known sources external to the FEM domain as well as 
impressed currents within the FEM domain.

Discretization of the above equation as in (11-62) results in a sparse FE matrix. As 
mentioned earlier, as long as the truncation surface is sufficiently away (such that the 
electromagnetic fields locally behave as outward traveling plane waves), the absorbing 
boundary condition (ABC) approximation gives sufficiently accurate results. In 
discretized form, the FE-ABC equations are given as

	
E E
E E

a
a

f
f

VV SV

VS SS
V

S

I

S



















 =









 , 	 (11-69)

where

	 E dv k dvVV
jv i jv i= ∇ × ⋅ ∇ × − ⋅∫ ∫( ) ( )e e e e0

2 	 (11-70)

for all finite-element edges inside the solution domain v, and

	
E E dv k dvSV VS T

jv i j iv
= = ∇ × ⋅ ∇ × − ⋅∫ ∫[ ] ( ) ( )e e e e0

2
	 (11-71)

for all basis functions ei in the volume v and testing functions ej associated with the 
edges on the boundary surface s. More importantly, the surface unknown contributions 
in (11-69) are given as

	 E dv k dv ik ds nSS
jv i j i= ∇ × ⋅ ∇ × − ⋅ − ×∫ ( ) ( ) ( ˆe e e e e0

2
0 jjsv in) ( ˆ ).∫∫ ⋅ × e 	 (11-72)

In addition, all excitations inside the FEM volume v contribute to the first part of the 
right-hand side and are computed using

	 f i dvI i
v

= ⋅∫ωµ W J . 	 (11-73)

Moreover, the surface portion of the excitation vector [ f I f S]T in (11-69) may also contain 
external incident field contributions in the form

	 f ds n ik ds n nS
jv is

= − ⋅ × − × ⋅ ×∫ ∫e H e E( ˆ ) ( ˆ ) ( ˆinc in
0

cc
internal) ,+ f S 	 (11-74)

in which any internal sources on the truncation boundary also contribute to the right-
hand side, viz.

	 f i dvS
v

i s
internal = ⋅∫ωµ W J , . 	 (11-75)
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Excitations interior to the solution domain are typically used to model port 
excitations in antenna design. These include infinitesimal voltage and current sources, 
as well as waveguide feed ports. We will summarize such excitations in Section 11.2.5.

All integrations involved in (11-70)–(11-75) can be evaluated numerically using a 
suitable quadrature. However, in most cases closed form expressions using the 
definitions of the basis functions can also be obtained.

Turning our attention back to mesh truncations schemes, we note that the approxi-
mate ABC in (11-65) is sometimes referred to as the zeroth order ABC (or the radiation 
boundary condition) since it involves only the far-field behavior of the electromagnetic 
energy. Several higher-order ABCs have also been developed for improved accuracy 
(see e.g., [36], [37], [15], [23], [10]). Such higher-order ABCs allow one to bring the FEM 
truncation surface closer to the antenna structure, thereby keeping the FEM domain 
and the resulting FEM matrix equation small, leading to faster and more efficient solu-
tions. Another alternative to keep the FEM mesh close to the antenna structure is to use 
perfectly matched layers, which are discussed below.

11.2.4.1.2   Artificial Absorbers and Perfectly Matched Layers  Much like the ABCs, artifi-
cial absorbers are simply artificial material layers that are placed on the truncation 
surface inside the FEM mesh. When the surface integral in (11-50) over the truncations 
surface s is simply discarded, the boundary surface ends up behaving like a conduct-
ing surface (the surface integral equals zero when Etan = 0). Artificial absorbers are 
placed over this PEC boundary to eliminate reflections back into the solution domain. 
As such, multiple layers to artificial lossy materials with equal relative permittivity 
and permeabilities ei = μi (for wave impedance matching) are placed on the inside of 
the truncation surface. The thicknesses and the material parameters are arranged such 
that the reflection from the truncation surface is minimized over a broad frequency 
and incidence angle range. The process of designing such artificial absorbers often re-
quires a multidimensional optimization and results in nonphysical material parame-
ters for the layers [23], [10]. A particular set of artificial absorbers, perfectly matched 
layers, is rather popular in FEM modeling (as well as in time-domain FEM and finite-
difference implementations).

Perfectly matched layers [15] are artificial, anisotropic lossy material layers that do 
not reflect waves impinging from a lossless medium. Formal derivation of various 
PMLs is lengthy and beyond the scope of this introductory chapter and can be found in 
most prominent finite-element books such as [23], [10]. With the predetermined PML 
material parameters, the FE equation (using anisotropic material formulation)

	 dv dv i dv
v

i
vv

( ) ( )∇ × ⋅ ⋅ ∇ × − ⋅ ⋅ = ⋅− ∫ ∫∫ W E W E W Jµ ω ω1 2  	 (11-76)

can be solved straightforwardly without the need to deal with the surface fields on s.
Several combinations of ABCs and PMLs have also been considered. In particular, 

ABC backed PMLs provide better absorption of outgoing energy. Also, averaging two 
solutions to the same problem, one with with PMC backed PML and the other with the 
conventional PEC backed PML, can provide much better accuracy.

11.2.4.1.3    Exact Mesh Termination Through Boundary Integral Equations  In addition to 
the mesh truncations summarized above, an exact relation between the tangential 
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electric and magnetic fields on the truncations surface can be used. These are given in 
terms of the Stratton-Chu integral representation formulas [38]. Namely, the electric 
field integral equation (EFIE) is given by

	 1
2

ˆ ( ˆ ) ˆ [ ˆ ( ˆ )] ˆ [ ˆ ( ˆ )]n n n n n n n n× × + × × × + × × ×E H EL K == × ×ˆ ( ˆ ),n n Einc 	 (11-77)

and the magnetic field integral equation (MFIE) is given by

	
1
2

ˆ ˆ ( ˆ ) ˆ ( ˆ ) ˆ ,n n n n n n× + × × − × × = ×H H E HK L inc 	 (11-78)

where the operators L and K are defined as

	 L( )X X X= − + ∇ ′∇ ⋅
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∫ik ds
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0
0
2

1
4

0

π
	 (11-79)

and

	 K( ) ,X X= × ∇∫ ds
e

Rs

ik R0

4π
	 (11-80)

in which R = |r – r’| is the distance between the source and observation points. Both 
(11-77) and (11-78) are exact relations between the tangential field components; 
however, while the ABC relation n̂ × H = ik0

n̂ × (n̂ × E) was used to eliminate n̂ × H in 
(11-48) before, in this case the unknown n̂ × H appears under integral operators. Thus, 
a simple elimination is not possible. Nonetheless, we can treat n̂ × H as an unknown 
as it is and use the EFIE or the MFIE as an additional equation to complement the 
original FEM system. However, we must note that care must be taken in doing so 
since both (11-77) and (11-78) are themselves prone to so-called interior resonance 
problems. To eliminate this problem, a weighted sum of EFIE and MFIE, called the 
combined field integral equation, is used. The resulting FE-BI system is compactly 
given as

	
E E
E E B

B Z

E
E
H

VV SV

VS SS
V

S

S

0

0 

































=
















J
J
b

I

S . 	 (11-81)

In the above, the submatrices EVV, ESV, and EVS are identical to those given in (11-70) and 
(11-71). However, the submatrix ESS in (11-81) is slightly modified in that the surface 
integral in (11-72) is treated separately as a submatrix B, viz.

	
E dv k dv

B ik ds

SS
j iv j iv

= ∇ × ⋅ ∇ × − ⋅

= −

∫ ∫( ) ( )

(

e e e e0
2

0
ˆ̂ ) ( ˆ ).n niS j× ⋅ ×∫ e e

	 (11-82)
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In addition, the boundary integral equation submatrices B and Z are given in terms of 
the EFIE and MFIE contributions as   B B B= + (1 – )EFIE MFIEα α  and Z = aZEFIE + (1 – a) 
ZMFIE, where a is a constant between 0 and 1, typically chosen as 0.5 and

	

B ds n n n n njS i iEFIE = × ⋅ × × + × ×∫ ( ˆ ) ˆ ( ˆ ) ˆ ( ˆ )t e e
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2
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IIE
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	 (11-83)

Here, we also introduced the testing functions tj defined over the surface elements on s. 
Moreover, for the CFIE implementation, the excitations submatrix b associated with 
external excitations is also given as

	 b ds n n n ds njS j= × ⋅ × × + − × ⋅∫α α( ˆ ) ˆ ( ˆ ) ( ) ( ˆ )t E tinc 1 ˆ̂n
S

×∫ Hinc 	 (11-84)

Although the previous equations seem complicated, they can be greatly simplified 
when the surface basis/testing functions for the tangential electric and magnetic field 
are chosen to be the same such that ej = hj. Also, tj is chosen as tj = n̂ × hj on the surfaces 
of volumetric elements that lie on the boundary S. We also note that several variants 
of the FE-BI system have also been reported [39]–[42].

In numerically solving real-life problems, one would like to be assured that the 
obtained FEM solution is accurate. In essence, if a solution is obtained using an 
FEM mesh with an average edge length of h, it is important to put an upper bound 
on the error in the FEM solution in terms of the mesh parameter h. That is, we 
expect that FEM solution accuracy should improve when a denser mesh is used for 
the same problem. To measure a rate of convergence, the mesh parameter h is 
used. Another alternative is to improve the modeling abilities of the basis functions 
using higher-order expansions [43]–[47]. If we denote the FE expansion order with 
p, we must be assured that by increasing p the FEM error can be improved. 
Obviously, a denser mesh or a higher-order expansion is most beneficial in the 
regions where the field behavior changes rapidly due to sharp geometrical changes, 
such as edges and corners, or due to excitations points, such as feeds and waveguide 
ports. Thus, often both strategies are combined and mesh density and basis 
function order are adaptively increased over regions with rapid spatial field 
variations [48].

11.2.5  Feed Modeling
For an accurate antenna analysis, it is important that the antenna feeds within the 
FEM domain are accurately representable in the FEM statement. In addition to 
material modeling capabilities, the FEM also incorporates various feeding 
mechanisms used in modern antenna designs. Some of the most frequently used 
feed models are summarized in the following subsections.
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11.2.5.1  Current Probe Feeds
Coaxial transmission lines are widely used in printed antennas, such as microstrip 
patch antennas. Typically, the center conductor of the coaxial feed is attached to 
the patch and the outer conductor to the ground plane. The short section of the 
center conductor behaves as a current probe that excites the patch antenna. Such 
feeds can readily be modeled with FEM when this short section is treated as an 
impressed current source under the patch. As such, the coaxial transmission line is 
replaced by a current probe feed and the excitation of this current probe is 
computed by

	 f ik Z dvI i
Vs

= ⋅∫0 0 W J 	 (11-85)

where the impressed current source is due to a current element along the direc
tion of the original coaxial probe as

	 J r= ˆ ( ).lI sδ 	 (11-86)

The input impedance of the feeding port can be subsequently found by consid
ering the electric field unknown (after solving the FEM system) at the probe feed 
location using the well-known formula Zin = V/I, where

	 V dl l
l

= − ⋅∫ E ˆ 	 (11-87)

in which l is the length of the probe section.
Alternatively, for modeling antennas fed by other types of transmission 

lines, such as dipole antennas, a voltage gap model may be more appropriate.

11.2.5.2  Voltage Gap Feeds
If we assume a voltage differential exists across the pth edge of the FEM mesh, 
such that the electric field across the edge is forced to assume a constant value, 
we can eliminate the unknown associated with that edge through Es = V/d, where 
d is the length of the edge. With this assignment, the column in the FEM matrix 
associated with the voltage gap edge can be explicitly evaluated and thus is 
eliminated from the system, decreasing the matrix size by 1 for each voltage gap 
source. Consequently, the pth column becomes an excitation to the reduced 
system as

	 b
V
d

dv
k V

d
dvj j pv j pv

= ∇ × ⋅ ∇ × + ⋅∫ ∫( ) ( ) .w e w e0
2

	 (11-88)

After the solution of the reduced system, the input impedance of the voltage 
gap excitation port can be found from Zin = V/I, where the current I flowing 
across the voltage gap feed can be found by

	 I
I

i
dl c

c
= ∇ × ⋅∫ωµ

( ) ˆ.E 	 (11-89)
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11.2.5.3  Lumped Circuit Elements
Lumped elements can also be easily implemented by assigning lossy/reactive 
material parameters to the finite elements associated with the circuit components. 
For example, a lumped load of impedance ZL associated with the kth edge of the 
mesh contributes to the FEM via

	 E
ik Z l

Z
VV

L

=
− 0 0

2

	 (11-90)

As such, modeling of shorting pins is extremely easy in the sense that for 
each shorting pin edge, simply the associated edge unknown is set to zero, 
eliminating the associated column from the FEM matrix.

11.2.5.4  Waveguide Port Feeds
For modeling antennas that are fed via waveguides, a modal expansion must be 
incorporated into the FEM system. This is needed to express the surface H field over the 
waveguide port in terms of the unknown E field (so that the surface term in  
(11-48) can be eliminated). For this, a general modal summation expression for the 
waveguide fields, given as

	 H h E E e= + = +∑ ∑Hinc inca e
a
Z

em m
m

m

m

m
m

m

m

z zγ γ, 	 (11-91)

where

	 a e dsm
m

mS z L

L= ⋅ −−
=∫γ h H H[ ]inc 	 (11-92)

is used. Obviously, various orthonormality relationships between waveguide modes 
can be applied to simplify the above equation [23], [10], [38].

Although we stated the eigenmode expansion using infinitely many modes, the 
summations in (11-92) are truncated in FEM implementations. If the waveguide port 
surface inside the waveguide is chosen far enough from the waveguide-antenna 
junction, only a few terms in (11-92) is sufficient since most higher-order modes are 
evanescent and will die out before reaching the wave-port surface. Moreover, the wave-
port can be chosen sufficiently far from the junction such that considering only the 
dominant mode would result in accurate FEM solutions. Since waveguides are typically 
small in size, the additional burden to model the extra waveguide section in the FEM 
domain is often very small.

In addition to the feed models summarized above, known incident fields from 
sources external to the solution domain can also be included as excitations using (11-74) 
and (11-84) for the FE-ABC and FE-BI implementations, respectively. Moreover, FEM 
problems involving thin lossy material layers and/or conductors coated with thin 
layers can be further simplified by replacing such thin layers by equivalent impedance 
boundary conditions. Resistive sheets, thin dielectric layers, etc. can be readily 
approximated via impedance boundary conditions [49]. In addition, even nonlinear 
circuit elements such as diodes and transistors can be implemented into the FEM 
framework coupled with circuit simulation approaches.
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11.2.6  Calculation of Radiation Properties of Antennas
As noted in the previous subsection, antenna impedances associated with the small 
port excitations or waveguide feeds can be readily calculated after the FEM solution. 
Likewise, the near-zone fields around the antennas are available as an immediate result 
of the FEM solution. However, far-zone antenna parameters, such as the radiations 
patterns, need to be separately computed following the FEM solution. Fortunately, this 
can be accomplished by simply employing the Stratton-Chu integral representations 
given in (11-79) and (11-80) for observation points in the farzone. Thus, for FEM-ABC 
and FE-BI solutions, the following simple formulas are employed to compute the far-
field radiation patterns of the antennas using the tangential field values on the 
truncation boundary, E f f = L f f(n̂ × H) + K f f (n̂ × E), where

	 Lff i
s

n ds I kk n e( ˆ ) ˆ ˆ ( ˆ )× = −



 ⋅ × ⋅∫H H k r 	 (11-93)

and

	 K ff i
s

n dsk n n e( ˆ ) ˆ [ ˆ ( ˆ )]× = × × × ⋅∫K E k r 	 (11-94)

In case of FEM-PML solution, an auxiliary surface inside the FEM volume, 
sufficiently far away from the PML region as well as the antenna geometry, must 
be used to compute the tangential field quantities used in (11-93) and (11-94).

11.2.7  An FEM Example: Broadband Vivaldi Antenna
In this subsection, we demonstrate the FEM solution of a typical wideband antenna. 
The antenna of choice is a popular wideband Vivaldi, as shown in Fig. 11-19 [50]. 
As seen, the antenna consists of two tapered slots etched on both sides of a 
conductor backed dielectric substrate. The permittivity of the substrate used here 
is er = 2.2 and a stripline feed with a wideband open end is integrated into the 
antenna substrate. This feed is excited by two current probes at the end of the line 
between the two conductor planes. Alternatively, a coaxial waveguide feed can 
also be used to excite the stripline.

The Vivaldi antenna has been a popular element for phased arrays. Although 
the presented FEM is also applicable to antenna array modeling, standard approach 
often leads to very large FEM systems that are computationally intensive to solve. 
Several highly efficient methods based on decomposing the original problem into 
many identical subdomains (these subdomains obviously correspond to the 
individual antenna elements in a large phased array) have been developed. These 
domain decomposition methods are discussed in [51]–[54].

The first step in modeling the Vivaldi antenna is to represent its geometry on 
the computer and generate an FEM mesh. A typical mesh using hexahedral 
elements is shown in Fig. 11-12c. In order to proceed with the problem setup, first, 
all FEM unknowns associated with the conducting surface in the geometry are 
eliminated since the total tangential electric field on PEC surfaces is zero. For this 
particular example, the total number of non-PEC edges in the mesh is 2, 236. Next, 
all finite elements are assigned a relative permittivity of er = 2.2 and the FEM matrix 
is calculated using (11-81). The two current probe sources contribute to the right-
hand side of (11-81) through (11-85). We note that the FEM matrix and the excitation 
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vector must be computed for each frequency in order to generate the input 
impedance behavior of the antenna over a desired range of frequencies. To 
accelerate this process, fast frequency sweep methods based on the asymptotic 
waveform evaluation (AWE) expansion [10], domain decomposition based 
preconditioners (see Section 11.3), as well as model order reduction techniques 
[26] are used.

Next, we first consider an FE-BI solution of the Vivaldi antenna problem. Since, as 
described in Section 11.2.4, the BI treatment is an exact mesh truncation scheme, only 
the antenna structure is meshed as shown in Fig. 11-12c. This discretization results in 
986 volume unknowns and 1250 surface unknowns. However, we note that due to the 
moment method nature of the BI portion, the submatrices B and Z in (11-81) are fully 
populated, thus, the computational cost of FE-BI can be substantial. For larger size 
problems, one often resorts to fast integral equation solution methods, such as the fast 
multipole method or the adaptive integral method [55], [56].

After the matrix is computed, the contributions of the two current probe feeds that 
excite the stripline feeding the antenna are modeled using (11-85). The input impedance 
for the feed is computed as a parallel combination of the two current probes, each of 
which has an impedance according to (11-87).

Alternatively, we can also solve the same problem using FE-ABC, as described in 
Section 11.2.4. In this case, we need to mesh a substantial amount of space around the 
antenna so that we can use the ABC approximation of (11-64). For the FE-ABC, the total 
number of unknowns increase to 48,123. However, since the matrix system is extremely 
sparse, the computational cost of solving this larger system is still comparable with the 
FE-BI system.

Figure 11-19  A representative antenna problem: (a) Vivaldi tapered slot antenna geometry and 
(b) the stripline feeding the two tapered slots (Geometry is split in half for illustration of feeding 
detail).

(a)

PEC

Tapered slots

Stripline feed with
broadband open

(b)
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The resulting systems can be solved using a direct solver when the system size is 
relatively small since the computational complexity of direct solution scales as O(N3), 
where N is the overall matrix size. However, since most antenna simulations are done 
in the transmitting mode (with a fixed internal excitation), often only a single solution 
is sufficient for each frequency. Thus, relatively cheaper iterative solution techniques 
are often used in practice. Particularly, for larger problems, the computational savings 
of efficient iterative solvers and preconditioners (such as a simple diagonal 
preconditioner) make them the preferred choice.

After the matrix solution is obtained one can visualize the actual electromagnetic 
fields in and around the antenna structure. In Fig. 11-20, we plot the electric field on the 
surface of the Vivaldi antenna at 5 GHz. The coupling of the incident power from the 
stripline onto the tapered slot is clearly visible. The FE-ABC solution also provides  
the field behavior around the antenna, as well as inside. As seen in Fig. 11-21, the 
antenna radiates through the opening of the tapered slot.

In Fig. 11-22 we plot the input impedance of the Vivaldi antenna obtained by FE-BI 
and FE-ABC solutions. As seen, both are in good agreement with each other and predict 
that the antenna is designed to operate approximately between 1–5 GHz. We note, 
however, that this particular antenna design is intended to be used in a phased array 
configuration, such as the one shown in Fig. 11-23. In this case, the antenna behavior 
will be affected due to mutual coupling between adjacent elements. In Section 11.3, we 
address FEM techniques that are particularly well suited for antenna array analysis. 

Figure 11-20  Grayscale rendering of electric field magnitude inside the Vivaldi antenna at 5 GHz. 
(a) E

x
 showing the fields within the slot are mostly x-polarized, (b) E

y
 showing that the fields within 

the stripline are mostly y-polarized.

(a) (b)
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Such fast alternatives for array design by fully harnessing the modeling capabilities of 
FEM has been instrumental in developing new designs using full material and 
geometrical flexibility.

Finally, it is straightforward to compute the far zone radiation pattern of the Vivaldi 
using (11-93) and (11-94). Often depicted as a polar plot, the two principle cut radiation 
patters of the Vivaldi as shown in Fig. 11-24. In addition, Fig. 11-24b shows the three-
dimensional pattern of the antenna at 5 GHz. By integrating this pattern, standard 
antenna parameters, such as the directivity D0 and the total radiated power Prad can be 
readily obtained. Additionally, any impedance mismatches can also be included in this 

Figure 11-21  Volumetric field behavior in and around the Vivaldi antenna after FE-ABC solution 
(part of the FEM mesh is deleted to show the interior structure): (a) E

x
 (b) E

y

(a) (b)
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Figure 11-22  Input impedance of the Vivaldi antenna using the FE-BI and FE-ABC formulations
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calculation to compute the overall antenna gains. In antenna design problems, the FEM 
systems needs to be solved for each frequency. For broadband antennas, this might be 
a time-consuming task. Instead, fast frequency sweep algorithms based on the 
asymptotic waveform evaluation (see [10] and references therein) can significantly 
speed up the broadband simulations. Moreover, large phased antenna arrays made of 
many identical antenna elements can be efficiently solved by exploiting the symmetries 
in the geometry. Several domain decomposition algorithms have been developed [57], 
[51], [53] to efficiently tackle large FEM problems with geometrical repetitions. In the 
next section, we outline the domain decomposition method in the FEM context.

Figure 11-23  A 49-element dual polarization Vivaldi array

X Y

Z

Figure 11-24  (a) Far-field patterns of the Vivaldi antenna at 5 GHz on the two principle cuts.  
(b) 3D rendering of the antenna patterns at 5 GHz.
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11.3  Conformal Domain Decomposition Method
In this section, we adopt the engineering notation, and employ j = −1.

11.3.1  Notation
We first introduce some notation and definitions that will be employed throughout the 
manuscript. Boldface letters (e.g., u) are used to denote vectors in R3 while an overhead 
hat (e.g., û) will signify that the vector has unit magnitude. Finite dimensional matrices 
will be represented by uppercase italic characters (e.g., A), while lowercase italic 
characters will be used to represent column vectors (e.g., x). The imaginary unit will be 
represented by j.

We will denote the time-harmonic electric and magnetic fields by E and H, 
respectively [58]. The free-space wavenumber will be denoted by k0 0 0= ω µ ε , where  
ω = 2π f is the radial frequency of operation and ε0 and μ0 are the permittivity and 
permeability in free space, respectively. The free-space intrinsic impedance is given by
η µ ε0 0 0= / . In a material region, the wavenumber is given by k = ω µε , where ε and μ 
are the permittivity and permeability of the material. Also, we define εr = ε/ε0 and μr 
= μ /μ0 as the relative permittivity and permeability of the material.

In deriving the methods we will often consider a domain Ω  R3 and its decomposition 
into Np = 2 subdomains such that Ω = Ω1  Ω2 (see Fig. 11-25). Further, we define the 
interface between subdomains as Γ := ∂Ω1  ∂Ω2, and the exterior boundaries as ∂Ωi := 
∂Ωi  ∂Ω. We denote the outward-directed unit normal to ∂Ωi by n̂i. The subscripts i  
{1, 2} will denote the restriction of a quantity to Ωi. For example, in Ωi, Ei will denote the 
electric field while εri and μri will denote the relative permittivity and permeability, 
respectively.

We will also use the tangential trace operator

	 γ τ ( ) : ˆ |u n ui i i i= × ∂Ω 	 (11-95)

and tangential components trace operator

	 πτ ( ) : ˆ ( ˆ )|u n u ni i i i i= × × ∂Ω 	 (11-96)

along with the associated jump and average operators on the interface Γ:

	 u u u γ τ τγ γ: ( ) ( )= +1 2
	 (11-97)

	 u u u π τ τπ π: ( ) ( )= −1 2 	 (11-98)

	 {{u}} u uγ τ τγ γ: ( ( ) ( )).= −1
2 1 2

	 (11-99)

Figure 11-25  Notation for decomposition of the domain

n1n2

∼
∂Ω1

∼
∂Ω2∂Ω

Ω1Ω Ω2

Γ
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Volume and surface sesquilinear forms are defined by

	 ( , ) :u v u vΩ Ω
= ⋅∫ dv 	 (11-100)

and

	 〈 〉 = ⋅∂ ∂∫u v u v, : ,Ω Ω
ds 	 (11-101)

where the overbar denotes conjugation. Note that we sometimes use (u, v)Ω to mean the 
broken form (u1, v1)Ω1 + (u2, v2)Ω2 and, similarly, 〈u, v〉∂Ω = 〈 〉

∂Ω
u v1 1, 

1
 + 〈 〉

∂Ω
u v2 2, 

2
.

We recall the standard Sobolev spaces Hs(Ω) for s ∈ R and Ht(∂Ω) for t ∈ [–1, 1] [59], 
and set

	 Hs sH( ) : ( ( ))Ω Ω= 3 	 (11-102)

	 Ht tH( ) : ( ( ))∂ = ∂Ω Ω 3
	 (11-103)

	 L H2 0( ) : ( )Ω Ω= 	 (11-104)

	 L H2 0( ) : ( ).Ω Ω= 	 (11-105)

Also, we define [60]

	 H u L u L( , ) : { ( )| ( )}curl Ω Ω Ω= ∇ ×∈ ∈2 2 	 (11-106)

	 H u L u( , ) : { ( )| ( )}div Ω Ω Ω= ∇ ⋅∈ ∈2 2L 	 (11-107)

	 H u H u H− − −∂ = ∂ ∇ × ∂1 2 1 2 1 2/ / /( , ) : { ( )| (curlτ τΩ Ω Ω∈ ∈ )), ˆ }n u⋅ = 0 	 (11-108)

	 H u H u H− − −= ∂ ∇ ⋅ ∂1 2 1 2 1 2/ / /( , ) : { ( )| ( )divτ τ∂Ω Ω Ω∈ ∈ ,, ˆ }n u⋅ = 0 	 (11-109)

	 H u H u0 0( , ) : { ( , )| ( ) }.curl curl onΩ Ω Γ= =∈ γ τ D 	 (11-110)

Note that H0(curl, Ω) is the space of curl-conforming functions that satisfy essential 
boundary conditions on ΓD, the collection of surfaces on which Dirichlet boundary 
conditions are applied. This is the space in which the electric field resides, with the 
appropriate Dirichlet conditions imposed on Perfect Electrically Conducting (PEC) 
surfaces. That is, we may write Ei ∈ H0(curl, Ωi). Similarly, the subscript 0 will be used 
with other function spaces to denote that essential Dirichlet boundary conditions are 
enforced.

Finally, we recall that the function spaces for the traces of curl-conforming functions 
are given via [60]

	 H u u H− ∂ =1 2/ ( , ) : { ( )| ( , )}curl curlτ τπΩ Ω∈ 	 (11-111)

	 H u u H− ∂ =1 2/ ( , ) : { ( )| ( , )},div curlτ τγΩ Ω∈ 	 (11-112)
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and that

	 H H( , ) ( , )curl divΩ Ω′ = 	 (11-113)

	 H H− −∂ ′ = ∂1 2 1 2/ /( , ) ( , )curl divτ τΩ Ω 	 (11-114)

where X’ denotes the function space dual to X in the appropriate L2 inner product.

11.3.2  Interior Penalty Based Domain Decomposition Method
In this section, we introduce a conformal DD method that does not require auxiliary 
variables to solve for time-harmonic Maxwell equations. The method is closely related 
to the Interior Penalty (IP) Discontinuous Galerkin (DG) methods of [61], [62]. A general 
derivation of the method leads to many possible formulations, but one that provides an 
optimal rate of convergence in solution error as well as robust iterative solver 
convergence is selected for further study. 

When compared to the conventional FEM, the proposed method is less accurate for 
a given mesh due to energy dissipation on interfaces. As with all computational 
methods, solution accuracy to a prescribed tolerance can only be guaranteed using 
adaptive procedures that either produce finer computational meshes (h-refine) or 
increase the polynomial order of basis functions (p-refine) based on reliable a posteriori 
error estimators. We note that adaptive mesh refinement is most efficient when the 
numerical method gives an optimal error convergence rate. The current work therefore 
addresses two of the three key ingredients for a robust numerical method by providing 
an efficient, reliable solution procedure and an optimal rate of convergence. The final 
ingredients, adaptive refinement procedures, are left to future research and the work in 
[63], in the context of DG methods, may provide a starting point.

11.3.2.1  Boundary Value Problem
We begin by defining a Boundary Value Problem (BVP) for the decomposed problem 
of Fig. 11-25. It may be written as

	 ∇ × ∇ × − = −−µ ε ηr rk jk1
1

1 0
2

1 1 0 0 1 1E E Jimp in Ω 	 (11-115)

	 ∇ × ∇ × − = −−µ ε ηr rk jk1
1

2 0
2

2 2 0 0 2 2E E Jimp in Ω 	 (11-116)

	 π πτ τ( ) ( )E E1 2= on Γ 	 (11-117)

	 γ µ γ µτ τr r1
1

1 2
1

2
− −∇ ×( ) = ∇ ×E E( ) on Γ 	 (11-118)

	 γ µ µ πτ τr rjk1
1

1 1 1
1

1 1
− −∇ ×( ) = ∂E E( ) on Ω 	 (11-119)

	 γ µ µ πτ τr rjk2
1

2 2 2
1

2 2
− −∇ ×( ) = ∂E E( ) on Ω 	 (11-120)

where Ei ∈ H0 (curl, Ωi) represents the electric field in a subdomain. Note that E1 and E2 
are allowed to be discontinuous on Γ. Equations (11-117) and (11-118) enforce the 
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necessary continuity of the electric and magnetic fields on the interface between 
subdomains and render the BVP above equivalent to that of the original problem 
without decomposition. Equations (11-119) and (11-120) provide a simple first-order 
absorbing boundary condition (ABC) on ∂ Ω, though other conditions may also be 
applied to the boundary. The impressed electric current is assumed to be given such 
that Ji

imp ∈ H(div, Ωi).
We ignore other boundary conditions (e.g., PEC, PMC, and impedance conditions) 

and sometimes omit discussion of the ABC treatment in what follows as they can be 
accounted for as in the conventional FEM.

11.3.2.2  Weak Formulation
To derive the weak form we first introduce the following residual quantities and their 
associated function spaces:

        R E E J HΩ1

1
1
1

1 0
2

1 1 0 0 1
( ) : (= ∇ × ∇ × − +−µ ε ηr rk jk imp d∈ iiv, )Ω1 	 (11-121)

        R E E J HΩ2

2
2
1

2 0
2

2 2 0 0 2
( ) : (= ∇ × ∇ × − +−µ ε ηr rk jk imp d∈ iiv, )Ω2

	 (11-122)

        R E E HΓ Γ( ) /: ( ) ( ) ( , )3
1 2

1 2= − −π πτ τ τ∈ curl 	 (11-123)

        R E E HΓ
( ) /: (4

1
1

1 2
1

2
1 2= ∇ ×( ) + ∇ ×( )− − −γ µ γ µτ τr r ∈ divvτ , )Γ 	 (11-124)

         R E E H
∂

− − −= ∇ ×( ) −
Ω1

5
1
1

1 1 1
1

1
1( ) /: ( )γ µ µ πτ τr rjk ∈ 22

1( )∂Ω 	 (11-125)

         R E E H
∂

− − −= ∇ ×( ) −
Ω2

6
2
1

2 2 2
1

2
1( ) /: ( )γ µ µ πτ τr rjk ∈ 22

2( ).∂Ω 	 (11-126)

These residuals can be interpreted in terms of physical error currents that support a 
difference between the exact field solution and that obtained through the numerical 
method. RΩ1

(1) and RΩ2
(2) represent scaled volume electric error currents, jk0η0 JΩ1

err and 
jk0η0 JΩ2

err, respectively. Also, surface error currents exist on the interface due to RΓ
(3) and 

RΓ
(4). The former defines a rotated magnetic current, n̂i × MΓ

err, whereas the latter gives an 
electric current, JΓ

err.
Following the Galerkin procedure we introduce test functions to form proper dual 

pairs. These dual pairs can be interpreted via functional space arguments, or we may 
rely on a more physical interpretation using energy densities. These densities arise from 
dual pairs and we can then see that the volume electric currents, RΩ1

(i), should be paired 
with volume electric fields to give rise to the familiar E · J density. Thus, the test 
functions, wi are chosen from the same functional space as the electric field and we 
choose (w1, w2) ∈ H0(curl, Ω1) × H0(curl, Ω2). Similarly, we pair the rotated magnetic 
current of RΓ

(3) with a rotated magnetic field to give a surface energy density of the form 
H · M. Since the rotated magnetic field lies in the space H–1⁄2(divτ, Γ), we may use test 
functions of the form γτ(µri

–1∇ × wi). Lastly, the electric current of RΓ
(4) is paired with a 

surface electric field to give a surface density of the form E · J. The surface electric fields 
lie in the space H–1⁄2(curlτ, Γ) and we may use test functions πτ (wi).
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On Γ, two possibilities arise for the choice of basis functions, one from either side of 
the interface. Here, we simply choose an average of the two possibilities as testing 
functions.  Now, we may write a linear combination of the weighted residuals

 

w R w R

w

1
1

2
2

3 1
1

1

1
1

2
2

, ,( ) ( )
Ω Ω Ω Ω

( ) + ( )
+ ∇ ×( )−c rγ µτ −− ∇ ×( ) + +−γ µ π πτ τ τr c2

1
2

3
4 1 2

4w R w w R, ( ) ( ),( ) (
Γ Γ Γ

))

( )( ), ( ),

Γ

Ω Ω Ω
+ +

∂ ∂ ∂ ∂
c c5 1 4 2

6π πτ τw R w R 
1

1
2

(5)

ΩΩ

Γ Γ

2

+ − + ∇ ×( ) +−π π γ µ γ µτ τ τ τ( ) ( ), ( )w w R w1 2
3

1
1

1p r rr2
1

2
4 0− ∇ ×( ) =w R, ( )

Γ Γ

	

(11-127)

with coefficients c3, c4, c5, c6, p and q to be determined based on accuracy and 
convenience.

We note that the first four residuals are tested using the appropriate functions 
to give proper dual pairings whereas the ABC residuals, R

∂Ω1

(5)  and R
∂Ω2

(6) , are tested 
with curl-conforming functions as in the conventional FEM.

The final two terms on the left-hand side of (11-127), inspired by the DG and IP 
methods (see, e.g., [61], [62], [64], [65]), are included to penalize the discontinuities 
of the electric and magnetic fields across Γ. We see their importance upon consider-
ing the boundary testings

	
γ µτ r c q1

1
1 3

3 4
1 00− ∇ ×( ) + = ∀w R R w H, ( ,( ) ( )

Γ Γ Γ
∈ curl ΩΩ

Γ Γ Γ

1

2
1

2 3
3 4

2 00

)

, (( ) ( )γ µτ r c q− ∇ ×( ) − = ∀w R R w H∈ cuurl, )Ω2

	 (11-128)

and

	
π

π

τ

τ

( ), ( , )

(

( ) ( )w R R w H

w

1 4
4 3

1 0 10c pΓ Γ Γ
Ω+ = ∀ ∈ curl

22 4
4 3

2 0 20), ( , ).( ) ( )c pR R w HΓ Γ Γ
Ω− = ∀ ∈ curl

	 (11-129)

The coefficients appearing in (11-128) and (11-129) can be chosen to weakly enforce 
transmission conditions on the interface between subdomains and thereby satisfy 
(11-117) and (11-118). For a planar interface, the theory of non-overlapping DD 
methods for scalar and vector Helmholtz equations indicates that convergent 
iterative methods (for propagative modes) may be obtained by enforcing a complex, 
mixed TC [66]–[68]. In the present work, evanescent modes are handled through 
the use of a Krylov subspace iterative solver, as is common in DD methods for 
wave phenomena [69]. Specifically, we choose c3 and c4 real, and set p = –jc4

k/ µr ,  
q = jc3

µr / 
k with k = (k1 + k2)/2 and µr = ( µr1 + µr2)/2. Then, the TCs become the familiar 

ones of non-overlapping DD. Specifically

	
γ µ µ π γ µτ τ τr r rjk1

1
1

1
1 2

1
2

− − −∇ ×( ) − = − ∇ ×( )E E E  ( ) −−

∇ ×( ) −

−

− −

jk

jk

r

r r

 

 

µ π

γ µ µ π

τ

τ τ

1
2

2
1

2
1

2

( )

(

E

E E )) ( ).= − ∇ ×( ) −− −γ µ µ πτ τr rjk1
1

1
1

1E E 
	 (11-130)

We denote the method that uses the Robin TC above as the IP-DD method.
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Now, after integrating the first two terms of (11-127) by parts, we obtain 
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(11-131)

Turning to the choice of constant coefficients, we first set c5 = c6 = –1 to enforce the 
ABCs on ∂Ω as in the usual FEM. Examining (11-131) and assuming that the media are 
isotropic and μr is real, we can obtain a (convenient) symmetric formulation if c3 = –c4 = 
1/2. Then, the weak formulation is given by
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(11-132)

We also note that many formulations can be derived by selecting different coeffi-
cients in (11-130). However, it is as yet unclear how an effective precon-ditioner can be 
constructed for the resulting matrix. For example, with q = 0, the symmetric, nonsym-
metric, and incomplete interior penalty methods can be obtained by setting c4 = 1

2 , 1
2 , or 

0, respectively. The approximating properties of these methods have been analyzed in 
[61] and [62]. Note that some choices of coefficients may lead to suboptimal rates of con-
vergence in the solution. We demonstrate via numerical experiment in Sections 11.3.4, 
that an optimal rate of convergence is obtained with the IP-DD method.

11.3.3  Discrete Formulation
While the IP-DD method is applicable to both conformal and nonconformal meshes, we 
restrict ourselves here to the conformal case and introduce a partitioning, K, of Ω into a 
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conformal mesh of tetrahedra, K. To form the subdomains Ω1 and Ω2, the mesh is 
partitioned by grouping whole tetrahedra to give submeshes K1 and K2. The surface 
meshes induced by the partitioning are denoted by Tx, with the subscript x referring to 
the original domain. For example, the triangulation on Γ is denoted by TΓ and that on 
∂Ω is given by T∂Ω. On each of the subdomains, we define discrete trial and test functions, 
Ei

h ∈ Xi
h and wi

h ∈ Xi
h respectively, with Xi

h  H0(curl, Ωi). Here, Xi
h is taken to be the space 

of second-order, first kind Nedelec curl-conforming basis functions [70] over Ki, given 
in [71]. We also set Eh := (E1

h, E2
h), wh := (w1

h, w2
h), and Xh  := X1

h × X2
h. The discrete problem 

is then given by: Seek Eh ∈ Xh such that

	 a jkh h h h h( , ) ( , ) .w E w J w XK K= − ∀0 0η imp ∈ 	 (11-133)

The sesquilinear form in (11-133) is given by
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(11-134)

After expanding the field in terms of the basis functions, the discrete system  
(11-133) can then be cast as a matrix equation for the electric field coefficients E1  
and E2:
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	 (11-135)

where
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In (11-136), the superscripts x ∈ {I, B} correspond, respectively, to tetrahedra interior 
to the subdomain and those adjacent to its boundary, ∂Ωi. The block matrices are 
given by
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We can solve (11-135) via a preconditioned Krylov subspace method. The simplest 
preconditioner is of block-Jacobi type and can be written as

	 M
A

A
=





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1

2

0
0

. 	 (11-138)

The system to be solved is of the form M–1Ax = M–1b and we see that application of the 
preconditioner requires the inversion of each subdomain matrix, Ai. The subdomain 
matrices can be factorized in a preprocessing step or solved via another preconditioned 
Krylov method at each iteration (an “inner loop” iteration). Here, as a compromise 
between solution speed and memory usage, we use an incomplete factorization of each 
subdomain matrix to construct the preconditioner.

In addition to (11-138), other block preconditioners (e.g., Gauss-Seidel) may also be 
used. In serial these preconditioners entail a reasonable amount of additional 
computational effort; in parallel they may significantly increase communication costs.

11.3.4  Numerical Results
In this section, we study the proposed method via numerical experiment. We restrict 
ourselves to the symmetric case with μr real and use a preconditioned Conjugate 
Residual (CR) solver [72] for the solution of (11-135). Note that despite the increased 
memory requirement, we prefer the CR algorithm to a Conjugate Gradient method 
because we have found that it provides more stable convergence. The convergence 
criteria for the CR solver is defined as
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M b
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2
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. 	 (11-139)
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Note that for serial methods we have found that a block Gauss-Seidel preconditioner 
with truncated Generalized Conjugate Residual (GCR) method [73] to be a better 
approach.

To apply the proposed method here, the subdomains, Ki, i = 1, . . . , Np, are formed by 
partitioning the tetrahedral mesh K using the METIS software package [74]. Drop toler-
ances of ξ = 10–6 are used for the preconditioner’s incomplete Choleski factorizations. 
Although double-precision arithmetic is used throughout, the factorizations are per-
formed using only single-precision. First-order ABCs are used to truncate the computa-
tional regions unless otherwise noted. All computational statistics are reported using  
a workstation with two quad-core 64-bit Intel Xeon X5450 CPUs and 32 GB of RAM. 
Unless otherwise specified, 8 threads are used in an OpenMP [75] threaded implemen-
tation. All computational timings are reported as wall clock times.

11.3.4.1  Rectangular Waveguide
We first use an X-band (WR-90) rectangular waveguide excited by a TE10 mode and 
operating at 10 GHz to verify that with mesh refinement, the solution converges to the 
exact one at the proper rate. Successively finer quasi-uniform meshes are generated and 
then partitioned into two domains for the simulations. The waveguide ports are 
terminated with perfectly matched layers (PMLs). Figures 11-26a and 11-26b show that 
reflection and transmission coefficients computed with the proposed method, and the 
method of [53] that employs divergence-conforming cement variables, converge at the 
same rate as those of the FEM.

Figure 11-27 shows the number of CR iterations required for the two DD methods’ 
solutions as the mesh is refined. The figure clearly demonstrates the IP-DD method’s 
improvement over that of [53]. The figure also shows that solver convergence is sensitive 
to mesh size and a linear dependence is observed. This is due to the fact that the number 
of evanescent modes on the interface increases linearly as the mesh is refined. We 
remark that although a stopping criteria of e = 10–8 is used here, a tolerance several 
orders of magnitude larger is usually sufficient for the accuracy required of practical 
simulations.

Next, we use an 8λ0 long segment of waveguide to examine the energy loss due to 
the method. We first solve the problem via a conventional FEM solver and then partition 
it with transverse slices into Np ∈ {2, 4, 8, 16} partitions and solve via the proposed 
method. The total power at each port is determined and normalized against the power 

Figure 11-26  Error convergence of waveguide S-parameters
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obtained from the FEM solution. The experiment is repeated for several mesh sizes and 
the results are shown plotted in Fig. 11-28. We first note that the total power decreases 
linearly as the number of domains is increased. That is, each additional interface 
introduces a constant amount of loss. We also note that once again, as the mesh is 
refined, the solution converges toward the exact one at the optimal rate.

We note that in the present method, as with the conventional FEM and all numerical 
methods, no guarantee in solution accuracy is available unless (h or p) adaptive proce-
dures are employed. No simple heuristic on mesh size is sufficient to guarantee a certain 
level of numerical accuracy. The important point for the method is that arbitrary solution 
accuracy can be obtained via mesh refinement or by increasing the polynomial order of 
the basis functions. If the method converges at the optimal rate, as shown above, the 
adaptive procedure is most efficient. Adaptive refinement for the present method will 
differ slightly from the conventional FEM in that additional refinement on subdomain 

Figure 11-27  Solver convergence for waveguide with respect to mesh size, e = 10–8
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Figure 11-28  Energy loss in a waveguide with varying number of partitions and mesh size
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interfaces may be desired. This local mesh refinement or polynomial enrichment on the 
interface would mitigate the energy dissipation since the order of the error is always on 
the same order of the error of the FEM method used within each subdomain.

11.3.4.2  Coated Sphere
We further examine the accuracy of the proposed method using a plane-wave incident 
upon a dielectric-coated perfectly electrically conducting (PEC) sphere. The radii of the 
PEC sphere and the outer surface of the coating are r1 = 1λ0 and r2 = 1.2λ0, respectively.  
The coating has relative permittivity εr = 4 and the domain is truncated by a sphere of 
radius r3 = 3.2λ0. The bistatic radar cross-section (RCS) is found via a conventional FEM 
solver and the proposed method with Np ∈ {50, 100, 200} partitions. The error in RCS is 
determined using

	 RCS Error
ref num

=
−∫ | ( , ) ( , )| sinσ θ φ σ θ φ θ θ φ

π
2

00
d d

22

2
00

2

π

ππ
σ θ φ θ θ φ

∫

∫∫ | ( , )| sin
,

ref d d
	 (11-140)

where σnum is the numerical solution and σref is a reference solution obtained using the 
Mie series. Figure 11-29 shows that the solution of the proposed method once again 
converges at a rate equal to that of the FEM. Note that as the number of subdomains is 
increased, more error is introduced, as evidenced by the slight upward shift in the 
curves with increasing Np. This error is due to the loss of energy previously demonstrated 
in Section 11.3.4. The rates of convergence remain optimal and diminish as the solutions 
approach one where the error is dominated by the truncation error of the simple first 
order absorbing boundary condition. The bistatic RCS for mesh size h = λ0/6 is given in 
Fig. 11-30 and demonstrates good agreement with the Mie Series solution.

We now study the performance of the proposed method by comparing it to a p-type 
multiplicative Schwartz (pMUS) preconditioned FEM solver [76]. Here, only a single 
thread is used for a more fair comparison of the methods. It should be noted however, 

Figure 11-29  RCS error for coated sphere with varying number of partitions and mesh size
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that one of the IP-DD’s benefits is that it is an efficient parallel algorithm. We begin at 
an operating frequency of f = 50 MHz and use a coated sphere with r1 = 0.5λ0, r2 = 0.6λ0, 
r3 = 0.75λ0, and εr = 4. The domain is meshed with h = λ0/5 and solved via pMUS-FEM 
(that we denote by Np = 1) and the proposed method with Np ∈ {25, 50} partitions. The 
experiment is repeated for higher frequencies with the same computational domain 
and a new mesh such that h = λ0/5. A drop tolerance of ξ = 10–3 is used for the factorizations 
of subdomain blocks.

The computational statistics are given in Table 11-2 where we see that for small 
problem geometries, the pMUS-FEM method is superior in terms of convergence and 
solution time. Also, its memory requirements are reasonably low.

As the electrical size of the problem increases, we see that the pMUS preconditioner 
is no longer effective and the solver fails to converge to e = 10–3 within 1000 iterations. 
However, the proposed method is still able to obtain a solution.

The time and memory required for pMUS-FEM grow large due to the factorizations 
of large subblocks in the FEM matrix (that are obtained by splitting the hierarchical 
DoFs according to polynomial order). The time and memory required by the proposed 
method remains low due to the ability to control the size of the subblocks required for 
factorization; increasing Np leads to smaller subblocks for factorizations. Of course, the 
energy considerations discussed above and the effect on solution time must also be 
considered in determining the number of partitions to employ.

We now use the largest of the coated spheres to examine the parallel scalability of 
the method. We use Np = 50 subdomains and solve with 1 to 8 threads. The parallel 
speedup is measured as the total solution time required with t threads divided by the 
time required by the serial method. The results are shown in Fig. 11-31 and illustrate 
that a linear speedup is obtained when up to 4 threads are used. Beyond this, the 

Figure 11-30  Bistatic RCS for coated sphere with varying number of partitions, h = λ
0
/6, φ = 0
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Table 11-2  Computational Statistics for Coated Sphere Simulations

Np

Frequency 
(MHz)

Degrees of 
Freedom

Iterations 
( = 10–3)

Preconditioner 
Time (s)

Solution 
Time (s)

Peak Memory 
Usage (MB)

  1   50 11,382 6 1 0.3 26

100 77,868 54 20 18 190

150 256,196 40 213 53 699

200 612,726 a 974 — 1792

250 1,067,078 — 2670 — 3553

300 1,875,096 — 9215 — 7692

25   50 15,016 49 0.5 1.4 8

100 90,088 118 19 31 20

150 284,204 161 225 179 74

200 662,938 185 1210 593 213

250 1,136,124 170 3752 1095 434

300 1,978,766 240 11923 3190 870

50   50 17,154 72 0.3 2.3 8

100 95,624 146 11 35 20

150 296,066 135 118 135 52

200 684,042 239 659 677 118

250 1,166,672 188 2110 1082 202

300 2,024,852 352 5833 4040 402

aFailed to converge within 1000 CR iterations

Figure 11-31  Parallel speedup for a coated sphere
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speedup degrades. This can be explained by the fact that the processors of the dual 
quad-core machine are not truly parallel in terms of memory access. The four processors 
on a single die share two banks of 6 MB L2 cache. When more than two processors are 
used on a die (or more than four overall), the cache must be shared and this causes the 
observed degradation in speedup. Because the algorithm itself is highly parallel, we 
expect it to scale extremely well given the proper architecture.

11.3.4.3  Dielectric Cube
We now simulate a plane-wave incident upon a dielectric cube with permittivity εr = 
2 and edge length l1 = 1.2λ0. The scatterer is enclosed within a larger vacuum-filled cube 
with edge length l2 = 2λ0. The model is meshed quasi-uniformly with h = λ0/6. In  
Fig. 11-32a, solver convergence with respect to the number of partitions is examined.  
A fit through the data shows a dependence of about Np

1
8 in the number of iterations and 

demonstrates an insensitivity to the number of partitions used in simulation.
Starting from a similar geometry with l1 = 0.6λ0, l2 = 1λ0, h = λ0/6, and Np = 4, we 

study the behavior as problem size increases. To do so, the cube volume and Np are 
doubled for successive simulations. h is kept constant and the results of Fig. 11-32b 
demonstrate a dependence of the iterations on number of DoFs, N, of about N

1
7  and 

therefore very good scalability with respect to problem size.

11.3.4.4  Conformal Vivaldi Array with Meander-Line Polarizer
To examine the proposed method’s performance on large-scale problems, a 7 × 7 Vivaldi 
antenna array and a meander-line polarizer are simulated. The geometrical specifications 
of the antenna elements and polarizer can be found in [51] and [77] (App. C.8), respectively. 
After meshing, the mesh is transformed so as to be conformal to a spherical surface. The 
geometry and mesh are depicted in Fig. 11-33 where the polarizer is placed 2

3 0λ  away 
from the antenna aperture. The effect of the meander-lines is to change the field 
polarization from linear to circular. By using two such polarizers, the direction of linear 
polarization may be rotated. This may be desirable when, due to physical constraints, 
rotating the polarizers may be far simpler than manipulating the antenna. The simulation 
is performed at 5 GHz with Np = 1000 and requires 10,275,060 DoFs. Preconditioner setup 
and matrix solution require 4 minutes, and 22 minutes, respectively. 226 CR iterations are 
required (e = 10–2) and peak memory usage is 22.4 GB. The electric field magnitude on the 
antenna, ground plane and exterior truncation surface are shown in Fig. 11-34 on a 
logarithmic scale. The radiation field pattern of the array is given in Fig. 11-35.

Figure 11-32  Dielectric cube solver convergence with respect to varying problem parameters,  
e = 10–8
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Figure 11-33  Conformal 7 × 7 Vivaldi array with meander-line polarizer: geometry and mesh

Figure 11-34  Conformal 7 × 7 Vivaldi array with meander-line polarizer: electric field magnitude 
(log. scale)
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11.3.4.5  Dipole Array in an Aircraft Radome
Next, a circular array of 137 quarter-wavelength dipoles operating at f = 5 GHz is 
simulated in the presence of a conical dielectric aircraft radome with εr = 3. The array 
and radome are shown in Fig. 11-36a along with a shape-conforming truncation surface 
1
3 0λ  away from the radome’s exterior. The radome has length 14.7λ0, outer diameter 7λ0, 

Figure 11-35  Radiation pattern of a conformal 7 × 7 Vivaldi array with meander-line polarizer
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Figure 11-36  Aircraft radome with circular dipole array

(a) Geometry, l = 14.7 λ0, d = 7 λ0
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and thickness 1
6 0λ , The mesh of 1,993,853 tetrahedra is partitioned into 500 domains 

(shown in Fig. 11-36b) and results in 14,370,776 DoFs. Preconditioner setup requires  
32 minutes, while 21 minutes are required for 82 CR iterations (e = 10–2). Peak memory 
usage is 24.5 GB. The magnitude of the electric field on the radome is shown in  
Fig. 11-36c. Figures 11-37 and 11-38 show, respectively, the radiation field patterns of 
the dipole array alone and in the presence of the radome. The effect of the radome on 
the copolarization is apparent in the increased level of the sidelobes, with the first one 
increasing from –28 to –12 dB relative to the main lobe. Significant cross-polarization is 
also introduced, with the peak value increasing from –55 to –19 dB.

11.3.4.6  Horn Antenna Array Fed by a Rotman Lens
The next electrically large simulation is that of a horn antenna array fed by a Rotman 
lens. The goal of the lens is to provide linear phase to an antenna array such that the 
radiated power can be guided in a particular direction. The geometry is depicted in 
Fig. 11-39. The lens has width 12λ0 and length 10.4λ0 at the operating frequency in the 
upper C to lower X band. The lens is filled with a dielectric of permittivity εr = 2.5 –  
j0.00475. Sixteen input ports and and 32 output ports are connected to microstrip 
transmission lines via SMA connectors as shown in the center inset of Fig. 11-39. The 
output ports are then connected via coaxial cables of equal length to 32 horn antenna 
elements. The horn elements have a small transition from coaxial cable to the wave 

Figure 11-38  Radiation patterns of a circular dipole array with aircraft radome
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Figure 11-37  Radiation patterns of a circular dipole array
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guiding structure (upper inset of Fig. 11-39). Each horn element is 6.6λ0 high and  
2λ0 × 0.36λ0 at the aperture. The entire geometry is enclosed in an L-shaped box with 
its boundary never less than 1

3 0λ  from the geometry.
Simulations are performed for two input port excitations with the first excitation 

toward the center of the lens and the second one off-center. The excitation port 
determines the amount of phase variation in the output ports: the further the excitation 
port from center, the larger the phase variation and beamsteering angle.

The mesh consists of 2,847,778 tetrahedra and a decomposition into 1000 domains 
leads to 18,190,650 DoFs. The preconditioner setup requires 12 minutes and must be 
performed only once for both port excitations. The center port simulation requires  
42 minutes for 281 CR iterations (e = 10–2), whereas the off-center excitation requires  
48 minutes for 313 iterations. Both simulations have peak memory usages of 30.7 GB.

The electric field magnitudes, plotted with logarithmic scales, are given in  
Figs. 11-40a and 11-40b and the radiation patterns in Fig. 11-41. The effect of varying the 
excited input port is clearly visible upon examination of the wavefronts in Figs. 11-40a 
and 11-40b. Note that in the case of the “center” port excitation, a small phase difference 
occurs at the output ports due to the fact that the even number of input ports requires 
a slightly off-center input. A much larger phase variation is seen for the off-center input. 
The fields on the apertures of the horn antennas confirm this as do the radiation patterns 
that show main lobes centered at 3.5 and 39.5 degrees, for center and off-center 
excitations, respectively.

Figure 11-39  Configuration of the Rotman lens and horn antenna array. Insets (from upper right, 
clockwise): coax-to-horn antenna transitions, SMA connectors, and mesh decomposition.
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Figure 11-41  Radiation patterns of a Rotman lens feeding a horn antenna array

(a) Center port excitation (b) Off-center port excitation
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11.3.4.7  F-16 Scattering
Finally, we simulate the scattering of a f = 1 GHz plane-wave incident upon a long-
range F-16 jet. The problem geometry, with a truncation boundary at least λ0/3 away 
from the scatterer, is approximately 15 m long, 8 m wide, and 4.5 m high. A hollow 
dielectric radome with permittivity ε = 3 is placed at the front of the aircraft while a 
glass canopy with ε = 4.7 – j0.0705 sits atop the PEC body to form the cockpit. Figure 11-42 
shows the geometry of the jet along with the surface mesh and the inset illustrates the 
partitioning of the 2,8444,939 tetrahedra into 500 domains. In this case, simulation of 
the 19,817,336 DoF problem could not be fit entirely into RAM, and the factorizations 
were written and read from disk only when necessary. This considerably increases the 
wall clock time and, because the disk operations are performed serially, seriously 
impacts parallel efficiency. In light of this, we employ a serial Gauss-Seidel preconditioner 
with a truncated GCR(5) solver for this simulation, though the matrix vector 
multiplication is still performed in parallel.

Figure 11-40  (a) Electric field (log. scale) of a Rotman lens feeding a horn antenna array, center 
port excitation. (b) Electric field (log. scale) of a Rotman lens feeding a horn antenna array, off-
center port excitation.

(a) (b)
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Figure 11-42  F-16 geometry and surface mesh. Inset: mesh decomposition

The simulations of both nose-on and oblique incidence required 1 hour and  
52 minutes for preconditioner setup and a peak memory of 19.23 GB. The nose-on 
simulation required 4 hours and 50 minutes for 39 iterations while the oblique simulation 
used 4 hours and 10 minutes for 36 iterations. The electric fields on the F-16 are depicted 
in Figs. 11-43a and 11-43b for the nose-on and oblique excitations.

Figure 11-43  (a) Electric field of F-16 scattering problem, normally incident excitation. (b) 
Electric field of F-16 scattering problem, obliquely incident excitation.

(a) (b)
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