
BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

1

Chapter 1
The iPhone Software
Development Kit (SDK)

ch01.indd 1 7/24/09 9:27:12 AM

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

 2 iPhone SDK Programming: A Beginner’s Guide

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

Key Skills & Concepts

● Understand the App Store

● Understand how to obtain Xcode and the iPhone SDK

● Understand if this book is right for you

● Understand Xcode’s help and Apple’s online documentation

● Understand this book is about User Interface controls and using Interface Builder

I am mostly a loner—nobody calls me—so why do I pay over 100 dollars a month for an
iPhone? It is a darn useful toy—I mean tool. The last time I got lost, I started the Maps
application, and within seconds, it had located my position and provided me with a map.
I can check my e-mail anywhere, and the last time I needed to impress my friends,
I bought and installed the iFart application. I use the iPod app to listen to music, and every
once in a long while, someone calls.

As well as being mostly a loner, I am also an old guy and not the best candidate for
expounding the iPhone’s many virtues. For instance, I think texting is a time-waster. But my
14-year-old nephew, here on vacation the other week, certainly didn’t think so. He spent the
majority of his time texting friends back home. About what, who can guess, but he did it, and
my brother was paying for it. I should also mention he downloaded apps from the App Store,
and my brother was paying for those, too.

If you want some of my nephew’s money—I mean my brother’s money—you can get
some by writing and selling an iPhone application on the App Store. Unfortunately, the sure
path to riches, iPhone pornography and iPhone gambling, is off limits on the App Store, but
there are plenty other applications you might write.

The App Store
The App Store is a unique concept. The App Store is an Apple application on iPhones and iPod
touches. You use the App Store to browse and download applications from Apple’s iTunes Store.
Some applications are free, while others have a (usually) nominal charge. Using your iTunes
account, you can download applications directly to your iPhone or iPod Touch. What I like is that
I can use an iTunes Gift Card that I can buy at my local grocery store; no credit card needed.

Don’t know what to buy? You can go to one of the many Web sites dedicated to reviewing
applications on the App Store. For instance, www.appstoreapps.com (Figure 1-1) provides
reviews of both free and paid applications. Most applications are junk, but some are quite good.

Downloading applications from the App Store is both easy and inexpensive. That makes
it a lucrative market for independent developers wishing to take advantage of the iTunes
Store’s large user base. Independent developers can develop applications for the App Store by

ch01.indd 2 7/24/09 9:27:13 AM

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

 Chapter 1: The iPhone Software Development Kit (SDK) 3

Figure 1-1 The appstoreapps.com Web site reviews most App Store applications.

ch01.indd 3 7/24/09 9:27:14 AM

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

 4 iPhone SDK Programming: A Beginner’s Guide

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

Figure 1-2 The iPhone Reference Library in Xcode

downloading the iPhone SDK, developing an application, and joining the iPhone Developer
Program. Apple then reviews your application, and if it passes the review process, it is added
to the iTunes Store.

The Software Development Kit (SDK)
So you have decided to try your hand at developing applications for the App Store. The first
thing you must do if you wish being an iPhone developer is register as a member at the iPhone
Dev Center at http://developer.apple.com/iphone. Membership is free and allows downloading
the SDK.

The second thing you must do, arguably the first, is install Xcode and the iPhone SDK by
downloading it from Apple’s Developer Connection. Step-by-step installation instructions are
available on Apple’s Web site. After installing the iPhone SDK, the absolute next thing you
should do is start Xcode and download the documentation—all the documentation (Figure 1-2).
It will take awhile, but it is well worth it.

ch01.indd 4 7/24/09 9:27:14 AM

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

 Chapter 1: The iPhone Software Development Kit (SDK) 5

NOTE
You will find Apple’s documentation surprisingly complete and well written. I refer to this
documentation often in this book, so it is best to download it before continuing.

Paid Membership
Testing applications on an iPhone or iPod touch and selling applications on the App Store
require that you register with the iPhone Developer Program. This membership is different
from membership to the iPhone Dev Center. The iPhone Developer Program for individuals
costs $99 and entitles you to the tools needed to test on an iPod touch or iPhone. It is also how
you submit and distribute your application to the App Store, and Apple distributes any profit
you might earn through your iPhone Developer Program membership.

Objective-C, Foundation Framework,
Cocoa Touch, and UIKit

Apple describes the iPhone’s technology as layers. The base layer is the Core OS layer. On top
of that layer is the Core Services. On top of the Core Services is the Media layer. The topmost
layer is Cocoa Touch (Figure 1-3).

You can simplify the iPhone operating system (OS) even more; think of it as two layers—a
C layer and a Cocoa layer (Figure 1-4). The C layer comprises the operating system’s layer.
You use BSD UNIX–style C functions to manipulate this layer. This layer consists of things
like low-level file I/O, network sockets, POSIX threads, and SQLite. The Media layer is also
rather low-level and contains C application programming interfaces (APIs) like OpenGL
ES, Quartz, and Core Audio. The Cocoa layer overlays the C layer, and it simplifies iPhone
programming. For instance, rather than manipulating C strings, you use the Foundation
framework string, NSString.

Cocoa Touch
On the iPhone, Cocoa is called Cocoa Touch, rather than simply Cocoa, because the iPhone OS
contains touch events. If you have ever tapped, flicked, swiped, or pinched your iPhone’s display,
you know what touch events are. Touch events allow you to program responses to a user’s
touching the screen with his or her fingers.

Figure 1-3 The iPhone’s technology layers

Cocoa Touch

Media

iPhone OS

Core Services

ch01.indd 5 7/24/09 9:27:16 AM

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

 6 iPhone SDK Programming: A Beginner’s Guide

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

Cocoa Touch also provides the primary class libraries needed for iPhone development. The two
Cocoa Touch frameworks you will use in every iPhone application you write are the Foundation
framework and the UIKit framework. A framework is collection of code devoted to a similar task.
The Foundation framework is dedicated to standard programming topics, such as collections,
strings, file I/O, and other basic tasks. The UIKit is dedicated to the iPhone’s interface and contains
classes such as the UIView. In this book, you spend most your time learning the UIKit.

Foundation Framework
The Foundation framework contains Objective-C classes that wrap lower-level core
functionality. For instance, rather than working with low-level C file I/O, you can work with
the NSFileManager foundation class. The Foundation framework provides many useful
classes that you really should learn if you wish programming robust iPhone applications. The
Foundation framework makes programming using collections, dates and time, binary data,
URLs, threads, sockets, and most other lower-level C functionality easier by wrapping the C
functions with higher-level Objective-C classes.

TIP
See Apple’s Foundation Framework Reference for a complete listing of the classes and
protocols provided by the Foundation framework.

NOTE
If you are a Java programmer, think of the iPhone’s programming environment like this:
Objective-C is equivalent to Java’s core syntax. The Foundation framework is equivalent
to Java’s core classes, such as ArrayList, Exception, HashMap, String, Thread, and other
Java Standard Edition classes, and the UIKit is the equivalent of SWING. I realize it’s a
simplification, but it works for me.

The iPhone Frameworks
Table 1-1 lists the frameworks available to you as an iPhone developer. Of these frameworks,
this book dedicates itself to the UIKit rather than trying to cover a little bit of every framework.

Figure 1-4 The iPhone’s programming layers

Cocoa Touch

Media

iPhone OS

Objective-C Cocoa Layer

C Layer

Core Services

ch01.indd 6 7/24/09 9:27:17 AM

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

 Chapter 1: The iPhone Software Development Kit (SDK) 7

It is this book’s premise that once you understand how to create an iPhone application using
the UIKit classes, you should learn the other frameworks.

iPhone Limitations
If you have never programmed for a small device like an iPhone, there are some limitations
you should be aware of before you begin programming. Memory and processor speed are
constrained, and the screen is small. Security is also tight on an iPhone, and applications are
limited in what they can do.

Memory and Processor Speed
An iPhone’s memory is constrained. Chances are, you have a Mac with a dual-core and 2GB
of memory. Not so on the iPhone. Although Apple hasn’t divulged this information, according
to hacker Craig Hockenberry of furborg.org, he has estimated that an iPhone has about a
600 MHz processing speed with 128MB of available physical memory. The memory of the
device is limited compared to your desktop.

Framework Purpose
AddressBook Accessing user’s contacts

AddressBookUI Displaying Addressbook

AudioToolbox Audio data streams; playing and recording audio

AudioUnit Audio units

CFNetwork WiFi and cellular networking

CoreAudio Core audio classes

CoreFoundation Similar to Foundation framework, but lower level (don’t use
unless you absolutely must)

CoreGraphics Quartz 2D

CoreLocation User’s location/GPS

Foundation Cocoa foundation layer

MediaPlayer Video playback

OpenAL Positional audio library

OpenGLES Embedded OpenGL (2-D and 3-D graphics rendering)

QuartzCore Core animation

Security Certificates, keys, and trust policies

SystemConfiguration Network configuration

UIKit iPhone user interface layer

Table 1-1 Frameworks on the iPhone

ch01.indd 7 7/24/09 9:27:18 AM

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

 8 iPhone SDK Programming: A Beginner’s Guide

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

CAUTION
If your application uses too much memory, the iPhone OS X may abruptly terminate
your application to prevent a system crash.

Small Screen
An iPhone screen is 480 × 320 pixels. There is not much room to work with. Of course,
controls such as buttons are smaller on an iPhone, but the layout space is still significantly
constrained. If you are accustomed to programming user interfaces on a 1280 × 800 pixel
display, you must adjust your thinking. Screen size is limited.

The small screen size also results in only one window being visible at a time. In fact, every
application you develop in this book consists of one window. There will rarely be any reason
to create another window when programming an iPhone application. Instead, what you do is
swap views into and out of an application’s window. But only one view is visible at a time—no
exceptions. This restriction is sensible, as the screen is so small.

Security
You can only read or write to directories that are part of your application’s bundle. Areas
accessible to your application are said to be in your application’s sandbox. You cannot
read files created by other applications. You also cannot write to anywhere outside your
application’s sandbox. Applications written by SDK users cannot share resources, period.

Short-Lived Applications
Another iPhone application limitation is that it cannot be memory-resident. A memory-resident
application can run in the background while a user runs other applications. Forget about
memory-resident applications when programming for the iPhone. You can’t do it.

An iPhone can only have one program running at once. This restriction puts your application
in constant danger of the OS terminating it. Think about it: Allegedly, an iPhone’s primary
purpose is still that of a cellular phone. A phone call might arrive while your application is
running. In this situation, the OS asks a user if he or she wishes answering the call. If the user
chooses to answer the call, the iPhone OS terminates your application.

Because of this constant probability of sudden termination, you should program defensively
and anticipate abrupt terminations. You will see that the UIKit makes this easy by providing
event handlers you can implement whenever your application is about to terminate.

NOTE
Before you rail against Apple on this limitation, consider the alternative. Suppose you
develop a long-running and battery-eating application that is memory-resident. Your
application’s users notice a short battery life for their iPhone. Who do they blame, you
or Apple? Apple.

ch01.indd 8 7/24/09 9:27:18 AM

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

 Chapter 1: The iPhone Software Development Kit (SDK) 9

Try This

Manual Memory Management
One of the big improvements in Objective-C 2.0 is garbage collection. Garbage collection
frees developers from having to worry about memory management, as the system does so
automatically. But the iPhone, with its limited resources, does not include Objective-C 2.0
garbage collection. You must still manage memory yourself. You can use something called
autorelease, which makes memory management a little easier, but even autorelease is not
recommended. Instead, you should manage memory manually. Although not a huge limitation,
it is a pain, as forgetting to release an object is all too easy a mistake to make. Of course, as
you will see in Chapter 5, there are tools to help you track down and fix these errors.

Relevant Documentation
Apple has considerable online documentation. You have access to that documentation through
both your Developer Connection membership and through Xcode’s help. You should refer to
that documentation often. Most documentation is also available as PDF documents. The first
two documents you should download and print are the iPhone Application Programming Guide
and iPhone Development Guide. You might then consider downloading and printing Cocoa
Fundamentals Guide. You will also find documents on Objective-C and various Cocoa classes.
If you followed this chapter’s earlier recommendation and downloaded the documentation,
you will find that all this information is at your fingertips using Xcode’s help. This book tries
not to duplicate these online and desktop sources, but rather complement them by providing
step-by-step examples illustrating how to do things. Once you understand how, the online
documentation shows you more options to expand upon this book’s tutorial.

Getting a Quick Start on iPhone Development
This chapter ends with a quick-start example to whet your appetite. The next four chapters
cover prerequisites that you should have prior to learning the iPhone’s UIKit and Cocoa
Touch. But you are probably ready to start programming using these frameworks now, so this
chapter ends with a simple iPhone application. This quick start also familiarizes you with
the IBOutlet and IBAction keywords and their use, and it familiarizes you with Xcode and
Interface Builder.

NOTE
Almost every Try This example in this book has an accompanying video available at
my Web site (www.jamesabrannan.com). The first video—this Try This application—has
accompanying audio explaining the steps taken. The remaining videos have no sound;
however, they follow their corresponding Try This application’s numbered steps exactly,
so you can follow the video by referring to the book.

(continued)

ch01.indd 9 7/24/09 9:27:19 AM

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

 10 iPhone SDK Programming: A Beginner’s Guide

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

 1. Open Xcode. From the menu select File | New Project and the New Project dialog appears
(Figure 1-5).

 2. Select View-based Application and click Choose. In the Save As dialog, give the
application the name QuickStart (Figure 1-6).

Figure 1-5 New Project dialog

ch01.indd 10 7/24/09 9:27:19 AM

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

 Chapter 1: The iPhone Software Development Kit (SDK) 11

 3. Xcode should create the project. In the Groups & Files pane, expand the Classes and
Resources folders (Figure 1-7).

 4. Double-click QuickStartViewController.xib to open it in Interface Builder.

(continued)

Figure 1-6 Save As dialog

ch01.indd 11 7/24/09 9:27:19 AM

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

 12 iPhone SDK Programming: A Beginner’s Guide

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

 5. If a canvas like the one shown in Figure 1-8 is not visible, double-click View in the
document window (Figure 1-9).

 6. Ensure the library is visible by selecting Tools | Library from Interface Builder’s main
menu. Ensure the library shows all Cocoa Touch classes by going to the library’s top pane,
expanding Library, and clicking Cocoa Touch (Figure 1-10).

Figure 1-7 Xcode with Classes and Resources folders expanded

ch01.indd 12 7/24/09 9:27:20 AM

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

 Chapter 1: The iPhone Software Development Kit (SDK) 13

Figure 1-8 A view’s canvas in Interface Builder

Figure 1-9 The document window
(continued)

ch01.indd 13 7/24/09 9:27:20 AM

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

 14 iPhone SDK Programming: A Beginner’s Guide

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

Figure 1-10 The library

ch01.indd 14 7/24/09 9:27:20 AM

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

 Chapter 1: The iPhone Software Development Kit (SDK) 15

 7. Scroll through the controls until you find a Round Rect Button. Drag-and-drop the button
to the canvas (Figure 1-11).

 8. Double-click the button on the canvas, and give the button a title.

 9. Drag a label from the library to the canvas (Figure 1-12).

(continued)

Figure 1-11 Adding a button

ch01.indd 15 7/24/09 9:27:21 AM

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

 16 iPhone SDK Programming: A Beginner’s Guide

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

Figure 1-12 Adding a label

 10. Save and exit Interface Builder.

 11. Select QuickStartViewController.m in the Classes folder in Groups & Files. Xcode should
display the file in the editor pane (Figure 1-13).

 12. Change QuickStartViewController.m so it matches Listing 1-1.

 13. Open QuickStartViewController.h and modify the file so it matches Listing 1-2.

 14. Select Build | Build from Xcode’s main menu to build the application.

 15. Open QuickStartViewController.xib in Interface Builder.

ch01.indd 16 7/24/09 9:27:21 AM

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

 Chapter 1: The iPhone Software Development Kit (SDK) 17

Figure 1-13 Xcode displaying QuickStartViewController.m

 16. Select the button. Select Tools | Inspector from Interface Builder’s main menu to show the
Inspector (Figure 1-14). Open the Button Inspector by clicking the inspector’s second tab
(Figure 1-15).

 17. Next to Touch Up Inside, click and hold on the little circle. Move your cursor to File’s
Owner in the document window and release. Select sayHello: from the pop-up window
(Figure 1-16).

(continued)

ch01.indd 17 7/24/09 9:27:22 AM

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

 18 iPhone SDK Programming: A Beginner’s Guide

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

Figure 1-14 The Inspector

Figure 1-15 The button’s Button Inspector

ch01.indd 18 7/24/09 9:27:22 AM

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

 Chapter 1: The iPhone Software Development Kit (SDK) 19

Figure 1-16 Connecting a button to an IBAction (continued)

ch01.indd 19 7/24/09 9:27:23 AM

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

 20 iPhone SDK Programming: A Beginner’s Guide

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

 18. Click the label on the canvas, and the Inspector’s content should change to match the label.
Click the circle next to New Referencing Outlet, and drag-and-drop on the File’s Owner.
Select myLabel from the pop-up window. Be careful not to select View.

 19. Save and exit Interface Builder.

 20. In Xcode, ensure the Active SDK shows the Simulator and Debug options selected
(Figure 1-17).

Figure 1-17 Ensuring Active SDK shows Debug and the Simulator selected

ch01.indd 20 7/24/09 9:27:23 AM

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

 Chapter 1: The iPhone Software Development Kit (SDK) 21

 21. From Xcode’s main menu, select Build | Build And Run. Xcode should start the simulator,
install your application in it, and start your application (Figure 1-18).

 22. Select Run | Console to show the Debugger Console.

 23. Click the button, and the label’s text changes to Hello and the console displays the log
(Figure 1-19).

Listing 1-1 QuickStartViewController.m

#import "QuickStartViewController.h"
@implementation QuickStartViewController
@synthesize myLabel;
- (IBAction) sayHello: (id) sender {
 NSLog(@"Hello....");

Figure 1-18 The application running in the iPhone Simulator

(continued)

ch01.indd 21 7/24/09 9:27:24 AM

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

 22 iPhone SDK Programming: A Beginner’s Guide

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

 self.myLabel.text = @"Hello";
}
- (void) dealloc {
 [super dealloc];
 [myLabel release];
}
@end

Listing 1-2 QuickStartViewController.h

#import <UIKit/UIKit.h>
@interface QuickStartViewController : UIViewController {
 IBOutlet UILabel * myLabel;
}
@property (nonatomic, retain) IBOutlet UILabel * myLabel;
- (IBAction) sayHello: (id) sender;
@end

Figure 1-19 The application after clicking the button

ch01.indd 22 7/24/09 9:27:24 AM

BeginNew-Tight / iPhone SDK Programming: A Beginner’s Guide / James Brannan / 649-2 / Chapter 1

 Chapter 1: The iPhone Software Development Kit (SDK) 23

You just did a lot of steps with no explanation. But what you did in this Try This will be
second nature by this book’s end. The biggest concept you must take from this simple example
is using the IBAction and IBOutlet keywords.

IBAction and IBOutlet are covered several times in this book. IBActions are how you
connect methods in classes in Xcode to events fired by components created using Interface
Builder. IBOutlets are how you connect properties in classes in Xcode to graphical components
created using Interface Builder.

These graphical components reside in a nib file, so a more correct explanation would
be that IBActions and IBOutlets connect code to components in a nib file. For instance, you
connected the button’s Touch Up Inside event to the sayHello: action. The button lives in the
nib, while the sayHello method lives in the compiled class. Making the sayHello method an
IBAction connects the two. Like the button, the label also lives in the nib, while the myLabel
property lives in the compiled class. Making the myLabel property an IBOutlet in the class
file and then connecting the two in Interface Builder allows the class to manipulate the label
via the myLabel property. Don’t worry if this is still somewhat confusing—it won’t be by
the book’s end. If you must know more now, Chapter 7 has a more “official” explanation of
IBOutlets and IBActions.

Summary
This chapter introduced you to this book’s content. Anyone with basic programming skills can
write and release an application on Apple’s App Store. Moreover, he or she can make money
selling the application. Although the easy applications have all been released, there is room for
high-quality applications on the App Store. All it takes is for Apple to feature your application
on its Web site, and you are looking at a few thousand dollars for your efforts.

I love iPhone programming, and I find Objective-C a beautiful, elegant language. I am
certain that by this book’s end, you shall, too.

ch01.indd 23 7/24/09 9:27:24 AM

